Joint Software System Safety Committee

SOFTWARE SYSTEM SAFETY HANDBOOK
A Technical & Managerial Team Approach

December 1999

This Handbook
was funded and developed by the

Joint Services Computer Resources Management Group,
U.S. Nayvy,
U.S. Army,
and the U.S. Air Force

Under the direction and guidance
of the

Joint Services Software Safety Committee
of the
Joint Services System Safety Panel
and the
Electronic Industries Association, G-48 Committee

AUTHORS
David Alberico Contributing (Former Chairman)
John Bozarth Contributing
Michael Brown Contributing (Current Chairman)
Janet Gill Contributing
Steven Mattern Contributing and Integrating

Arch McKinlay VI Contributing

—_— - 2@ 9 | == 2@ - 9 |- @ @ @OO_— 9 9 @@=

_ = O |- 4 - —— -~

Acknowledgements

This Handbook represents the cumulative effort of many people. It underwent several reviews

by the technical community that resulted in numerous changes to the original draft. Therefore,

the contributors are too numerous to list. However, the Joint Services Software System Safety
Committee wishes to acknowledge the contributions of the contributing authors to the Handbook.
Special thanks to Lt. Col. David Alberico, USAF (RET), Air Force Safety Center, Chair-
person of the JSSSSC, from 1995 to 1998, for his initial guidance and contributions in the
development of the Handbook.

The following authors wrote significant portions of the current Handbook:

John Bozarth, CSP, EG&G Technical Services, Dahlgren, VA

Michael Brown, Naval Surface Warfare Center, Dahlgren Division,
(Chairperson, JSSSSC, 1998 to Present)

Janet Gill, Naval Air Warfare Center, Aircraft Division, Patuxent River, MD

Steven Mattern, Science and Engineering Associates, Albuquerque, NM

Archibald McKinlay, Booz-Allen and Hamilton, St. Louis, MO

Other contributing authors:

Brenda Hyland, Naval Air Warfare Center, Aircraft Division, Patuxent River, MD
Lenny Russo, U.S. Army Communication & Engineering Command, Ft. Monmouth, NJ

The committee would also like to thank the following individuals for their specific contributions:

Edward Kratovil, Naval Ordnance Safety and Security Activity, Indian Head, MD
Craig Schilders, Naval Facilities Command, Washington, DC

Benny Smith, U.S. Coast Guard, Washington, DC

Steve Smith, Federal Aviation Administration, Washington, DC

Lud Sorrentino, Booz-Allen and Hamilton, Dahlgren, VA

Norma Stopyra, Naval Space and Warfare Systems Command, San Diego, CA
Dennis Rilling, Naval Space and Warfare Systems Command, San Diego, CA
Benny White, National Aeronautics and Space Administration, Washington, DC
Martin Sullivan, EG&G Technical Services, Dahlgren, VA

This Handbook is the result of the contributions of the above mentioned individuals and the
extensive review comments from many others. The committee thanks all of the authors and
the contributors for their assistance in the development of this Handbook.

Software System Safety Handbook

Table of Contents

TABLE OF CONTENTS
. EXECUTIVE OVERVIEWcooiiiiiiiieieeeee ettt 1-1
2. INTRODUCTION TO THE HANDBOOKccceiiiiiriiiiiinieeiieieeeeieieeeeie e 2-1
2.1 INEEOAUCTION L.ttt ettt sttt e b 2-1
2.2 PUIPOSE ..t ettt et e et e et et e e st e e e areesnaees 2-2
2.3 SOOI ettt ettt e et e e st e e et e e e b e e e abeeetbeeenbeeetaeeenreeens 2-2
24 AUthOTIEY/StANAATAS.eeeiieeieeiiecieee ettt ettt st aeeenbeeeeas 2-3
24.1 Department 0f DEfeNSE........coviiiiiiiiiieiieiecieee et 2-3
24.1.1 DODD 5000.1 ..ottt ettt ens 2-3
24.1.2 DOD S5000.2R....cuiiiieiienieieieeiesie ettt ens 2-4
24.13 Military Standardscceeeevieiieeiiieiie et 24
242 Other GOVEINMENT AZENCICSveeviereieeiieriieereeniteeieesteesteesseesseeeseessaesseesseesssesnses 2-8
24.2.1 Department of TranSpOTtationcecueerieriieeriienieeriienieesteesreeveeseeereessaesseens 2-8
2422 National Aeronautics and Space AdminiStrationccceeeveeeveereeeieerieenenennn 2-11
243 COMMETCIAL ...ttt ettt es 2-11
2.4.3.1 Institute of Electrical and Electronic Engineering............ccccceevveevvienvencieenneennee. 2-12
2432 Electronic Industries ASSOCIAtION..........cccvieriieriieiieeieeieeeie et eee e eiee e 2-12
2433 International Electrotechnical CommiSSionccccveevuieriieniienieeniienieereeneen. 2-12
2.5 International Standards..........cocooieiiiiiiiii e 2-13
2.5.1 Australian Defense Standard DEF(AUST) 5679oooviieiiiiiiieiieiecieeieeeee e 2-13
2.5.2 United Kingdom Defense Standard 00-55 & 00-54........ccoovieviieiiienieniiieieeieenenn 2-14
253 United Kingdom Defense Standard 00-56ccccoevvieeiienieniiieniieieeieeeie e 2-14
2.6 HandboOK OVETVIEWcc.eiiuiiiiiriiiieiiieieete sttt ettt sttt e 2-15
2.6.1 Historical Background.............ccccuiiiiiiiiiiiiiiiiieciieiece et 2-15
2.6.2 Problem IdentifiCation...........c.ceoiiiiieiiieiiiiiieeieeicesee ettt 2-15
2.6.2.1 Within System Safety.......c.cociiiiiiiiiiiieiecteeceee e 2-16
2.6.2.2 Within Software Development...........ccceevierieiiieniiiiieiiecieeeeee e 2-17
2.6.3 Management ReSponSibIlItIescccuierieriieriieniieiieeie et 2-18
2.6.4 Introduction to the “Systems” APProach..........cceeeeriieiieniieiienieeeeceeeeeee s 2-18
2.6.4.1 The Hardware Development Life Cycle.........ocoveeiieniiiniieiiiiieiieeiecieeieeiene 2-19
2.6.4.2 The Software Development Life Cycle.........cooovveiieiiiiiiieniiniiiieeieeeeeeen 2-20
2.64.3 The Integration of Hardware and Software Life Cycles.........ccccoevvvvvieniennnnnn. 2-24
2.6.5 A Team” SOIULION.....cc.eiiiiiiiiieieetece ettt 2-25
2.7 Handbook Organizationccccuieruierieeiiieniieiieeie et eee et e sreeieesaeeaeessaeeseesnseenne 2-26
2.7.1 Planning and Managementcceecuierieeiiienieeiiesieeieesieeereesereeaeesieesveenseesnneens 2-28
2.7.2 Task IMPlemMENtatioN..........ccccvieiiirieeiieie ettt ettt e e et e saee e 2-28
2.7.3 Software Risk Assessment and ACCEPLaNCE.........eeeveeriieriieiiierieeiieiie e eeee e 2-29
2.7.4 Supplementary APPENAICEScccuieriieriienieeiierie ettt erite et e e eseesereeseenens 2-29
3. INTRODUCTION TO RISK MANAGEMENT AND SYSTEM SAFETYccccccveevenenn. 3-1
3.1 INEEOAUCTION ...ttt ettt st et e b 3-1
3.2 A Discussion Of RISK......coueeiiiiiiiiiiiieieeeceee e 3-1

Software System Safety Handbook

Table of Contents

33 TYPES OF RISK...eeiiiiiieeeeeee et e e e e e enneees 3-2
34 Areas of Program RiSKc.oooiiiiiiiiiieceee et 3-3
34.1 SChedule RISK......couiiiiiiiee e s 3-5
342 BUd@et RISK ...ceeiiieiieeeeeee et 3-6
343 SoCIOPOIItICAl RISK ...vviiiiiiieiiiieceeceeee e e e 3-7
34.4 Technical RISK.......cc.oiiiiiiiie e 3-7
3.5 System Safety ENgINEEIiNG.......ccccvuiieiiiieiiiecieeee e e e e eenee s 3-8
3.6 Safety RisSk Management..........ceecuiieeiiieeiiieciiee et eeieeeeiee et svee e e eaveeeareeeneeas 3-11
3.6.1 Initial Safety Risk ASSESSMENt........ccccviiiiiiiiiiieeiie e e 3-12
3.6.1.1 Hazard and Failure Mode Identification.............cccceeiiiniiniiiniiniiiieiceeeee, 3-12
3.6.1.2 HAzZard SEVETILYccvviieiii et 3-12
3.6.1.3 Hazard Probability........c.ccocuiiiiiiiiiieccece e 3-13
3.6.14 HRI MALTIX ..ttt sttt et st sbe e et 3-14
3.6.2 Safety Order of Precedence........oovuvieeiiieeiiieeieeeeeee et 3-15
3.6.3 Elimination or Risk Reduction.............ccccoiiiiiiiiiiiiiinieeee e 3-16
3.6.4 Quantification of Residual Safety Risk.........ccccoeviiiieiiiieiiiee e, 3-17
3.6.5 Managing and Assuming Residual Safety Riskccccooevvieiiiiiiiiiiie 3-18
4. SOFTWARE SAFETY ENGINEERING........ccocoiiiiiiiiiieiieeee e 4-1
4.1 INErOAUCTION ...ttt st ettt e bt e et e neeesareens 4-1
4.1.1 SeCtion 4 FOTMALcc.eoiiiiiiiiiiiie ettt sttt et ens 4-3
4.1.2 ProCesS CRATTSeiiiiiiiieiie ettt ettt 4-3
4.13 Software Safety Engineering Products...........cccoeevieiciiieiiiiciie e 4-5
4.2 Software Safety Planning Managementcccuveeviieeiiieeniieeeieeeie e eereeeevee e 4-5
4.2.1 PIANNING. ...ttt e e et e et e et a e e aa e e eraeeenreeas 4-6
42.1.1 Establish the System Safety Program............ccccoeeoiiiiiiiiniiiiceeeeece e 4-10
42.1.2 Defining Acceptable Levels of RisK........cccouveeiieiiiiiiiieeieeeeee e 4-11
42.1.3 Program INterfaces.........coeiviiieiiiiiieeeee e 4-12
42.14 Contract DElIVErablescocuiiiiiiiiiiiiiiieeeee e 4-16
42.1.5 Develop Software Hazard Criticality MatrixXccceeevveeiiieeiieeciie e 4-17
422 MANAZEIMENLeeiiiiiiieeeiiiieeeeeee e eetee e e et e e eeteeeeestreeeessstaeeeesnnsaeesenssseeeeennsneeesanes 4-21
4.3 Software Safety Task Implementationcccceecveeeriieeiiieeiiieecee e 4-25
4.3.1 Software Safety Program MileStONEescccvveeviieeiiieeiieeeiie e 4-26
4.3.1 Preliminary Hazard List Development...........cccveevuiieeiieeciie e 4-28
4.3.2 Tailoring Generic Safety-Critical Requirements............ccccceevvieeeiieeiiie e 4-31
433 Preliminary Hazard Analysis Developmentccccccvveeeiieeeiieeciienie e 4-33
434 Derive System Safety-Critical Software Requirementsc.cccccvveeeveencieenneenns 4-37
434.1 Preliminary Software Safety Requirementsccccoeevvveviieecieeiiieecie e, 4-39
4.34.2 Matured Software Safety Requirements............cccecevveeriieeiiieeiieesie e 4-40
4343 Documenting Software Safety Requirementscccceeeeveeeviieicieeeiieeeeeee, 4-40
434.4 Software Analysis FOIA@rs.........ccoouiiiiiiiiiiiiciiieeie e 441
4.3.5 Preliminary Software Design, Subsystem Hazard Analysis..........c.cccccvvevevveenneennne. 4-42
43.5.1 Module Safety-Criticality ANalySiS......ccccccvieriieeriieeriie e 4-45
4352 Program Structure ANalysiS..........ccvveerireriiiieriieeeiee e e 4-45
43.5.3 Traceability ANALYSIS......ccciiieiiiieeeiieeeiee ettt eree e e e e e e e e e enes 4-46

il

Software System Safety Handbook

Table of Contents

4.3.6 Detailed Software Design, Subsystem Hazard Analysis..........cccceevieevieencrieenneenns 4-47
4.3.6.1 Participate in Software Design Maturationccceeeeveeeeieeerieeeciieesvee e 4-48
4.3.6.2 Detailed Design Software Safety Analysis.......cccceeevvverieeeriieeiieeeieeeiee e 4-49
4.3.6.3 Detailed Design Analysis Related Sub-processesccoecveeeeveeecieecciieecveenee, 4-53
4.3.7 System Hazard ANalYSiS.......cccuieeciieriiieeiiie ettt ree e e e e 4-60
4.4 Software Safety Testing & Risk ASSESSMENt.........ccccviieriieeiiieeieecie e 4-63
4.4.1 Software Safety Test Planningcccoeecvvieeiiiieiiiiieieceeeeeee e 4-63
4.4.2 Software Safety Test ANAlYSIS.....cccuiiiiiieiiieeiiie et e 4-65
443 Software Standards and Criteria ASSESSIMENT..........cccveeerveeeiieeriieeereeerreeeeeeeeaeees 4-69
4.4.4 Software Safety Residual Risk ASSESSMENtc.ccevveeeciiieiiiieeiieecee e, 4-71
4.5 Safety ASSeSSMENt REPOTt.......uiiiiiiiiiiieciit et e 4-73
4.5.1 Safety Assessment Report Table of Contentsccceeeveeeeiieecieeccieecee e, 4-74
A. DEFINITION OF TERMS

Y N B o3 (0 1) 1 0 SRS A-1
A2 DETINIIONS ...ttt ettt et e ettt e b e ettt e it e et eneeas A-5
B. REFERENCES

B.1 Government RETEIENCESc.eeiiiiiiiiiiiiiieie ettt B-1
B.2 Commericial REfErenCesceoiuiiiiiiiiiiiieiiecee e B-1
B.3 Individual References..........ccoouiiiiiiiiiiiiieiiieee e B-2
B4 Other REfEIENCEScoiueiiiiiiiiiiiee et ettt s B-3
C. HANDBOOK SUPPLEMENTAL INFORMATION

C.1 Proposed Contents of the System Safety Data Librarycccccccuvveviieeiiiencieeeiie e C-1
C.1.1 System Safety Program Planccccooviiiiiiiiiiii e C-1
C.1.2 Software Safety Program Plan...........cccocoiiiiiiiiiiie e C-2
C.13 Preliminary Hazard LiStcccvviiiiiiiiie ettt C-3
C.14 Safety-Critical FUNCtions LiSt......c..cccouiieiiiieiiieeiieeeee et C4
C.1.5 Preliminary Hazard ANalySis........cccieecieeeiiiiiiiieeeiieeiee et C-5
C.1.6 Subsystem Hazard ANALYSiscccveerciieeiiieeiiieeiiee et e e e e naee e C-6
C.1.7 System Hazard ANalYSiS.......ccuieiiuiieiiiieeiiie ettt eree e svee e e saaeeenaeeens C-6
C.1.8 Safety Requirements Criteria ANalYSiSccccuveeriieeiieeeiieeeiiee e ereeeereeeevee e C-7
C.1.9 Safety Requirements Verification REpOrtcccveevviiiiiiieiiiiciiecie e C-8
C.1.10 Safety AsseSSMENt REPOTt........oiiiuiiiiiiiecieeceeee e C-9
C.2 Contractual DOCUMENTATION.cccuieiiiiieeiieeeiieeetie e e et et eeeeeebeeesreeesereeeeseesneneas C-10
C2.1 Statement of Operational Needc.eeeciiieiiiiiiiieeieeeeeee e C-10
C2.2 Request FOr Proposalc.eeeeuiiieiiiecie et C-10
C23 LO10) 110 o7 RS TRS C-11
C24 Statement Of WOTKooouiiiiiiee e C-11
C2.5 System and Product Specification...........cceeeeveeeiiieeiiieeieeeee e C-13
C.2.6 System and Subsystem RequIrements...........cceeecveeeiieeeiiieeeiieesiie e eereeeevee e C-14
C.3 Planning INterfacescecuiiiiiieeiie ettt e e e e e e e aaeesabeeenanee s C-14
C3.1 Engineering Management............ccccuvieiiieeiiieeiiieeeieeeeeeeeereeesaeeeereesreeesneeesnsee e C-14
C3.2 Design ENGINEETING ...cccuviieeeiiiiiieeiiee ettt aee e eesav e e eeaeesneeeenns C-14
C33 SyStems ENGINEETINGcccvieiiiiieiiieeciie ettt et ereeesvee e eveeesveeenaeeeaneeeneees C-15

il

Software System Safety Handbook

Table of Contents

C34
C3.5
C3.6
C4

C4.1
C4.2
C43
C44
C4.5
C4.6
C4.7
C4.8
C4.9
C5

C5.1
C5.2
Cs53
Cs54
CS5.5
C.6

C.6.1
C6.2
C.6.3
C.6.4
C.6.5
C.7

C.7.1
C7.2
C.73
C74
C.7.5
C.7.6
C.7.7
C.7.8
C.7.9
C.38

C.8.1
C8.2
C.83
C84
C.8.5
C9

Co.1

Software DevelOpPMENLt.........cccuvieiiieeiiieeie et e C-16
Integrated LogiStiCS SUPPOTL......eieeeuiieiiiieeiieeeieeeciee et ree et e e e e e e e e C-16
Other Engineering SUPPOTt.........ceevieeiiieeiieeeeieeectee et e evee et eeeaeeeeaee e C-17
Meetings and REVIEWSeiiiiiiiiiieciee ettt sre e e e e e aae e e e e eens C-17
Program Management REVIEWS..........cccuvieiiiiiiiiieiiieeeiee e C-17
Integrated Product Team Meetingsccccveeeruieeeiiiieeiieeeiie e C-18
System Requirements REVIEWScc.eeeciiieiiiiciiiecieeee et C-18
SYSTEM/Subsystem Design ReVIEWS........cccueevviiiiiiiiieeiieeeiee et C-19
Preliminary Desi@n REeVIEW........ccccuiiiiiiiiiiie ettt C-19
Critical Design REVIEWccciiiiiiiieiieceecte et C-20
Test Readiness REVIEW.......cc.eiiiiiiiiiiiiiieceeeee e C-21
Functional Configuration Audit..........cceeeeiiiiiiieeiiieee e C-22
Physical Configuration AUdit...........ccccueeeiiieeiiieeiiee et C-22
WOTKING GIOUPS ..cveviiiiiieiiiieeiiee ettt ette e et e st e e s te e e eaeeeeaeeesaeesasaeessseeessseeensseeensseesnnes C-23
System Safety Working Group.........cceeecveeecieeecieeeiieeeie et eeveeesvee e e e C-23
Software System Safety Working Groupccccveeevveeeriieeiieeeiieeeee e C-23
Test Integration Working Group/Test Planning Working Group..........cccceeeeuveenee. C-25
Computer Resources Working Groupceccveeeeieeeiiieeiieecie e C-25
Interface Control Working Groupcc.cecveeeciieeeiieeciie e C-25
ReESOUICE ALLOCALIONeeuiiiiiiiiie ettt et C-26
Safety PersONNel........cc.oieiiiiiiie e e e C-26
FUNAING. ..ottt e e e e et e e e e e aeeseneeeenns C-27
Safety Schedules and MIleStONESccccvveeeiiieriiieeiieeie et C-27
Safety Tools and TTalNiNgcccveeeiiieeiiieecee e e e e e C-28
Required Hardware and SOftWarec.coecvieeiiiiniieeieeeee e C-28
Pro@ram PLanscoooiiiiiii et et C-29
Risk Management Plan............cccooovuiiiiiiiiiiieceece e C-29
Quality ASSUrance Plancccooouiieiiiieiiieceeee e C-30
Reliability Engineering Planccccovioiiiiiiiieeieeeeeee e C-30
Software Development Plan............ccccoieiiiiiiiiicie e C-31
Systems Engineering Management Planccccooovveeiiiiiiiiiccii e, C-32
Test and Evaluation Master Plan.............coocoeoiiiiiiiiiiiee e C-33
Software Test P1ancooiiiiiiiiie e C-34
Software Installation Planccooiiiiiiiiiii e C-34
Software Transition Plan...........coccoooiiiiiiiiiiiii e C-35
Hardware and Human Interface Requirementsccceecveeeeiieicieeniie e C-35
Interface REqUITEMENLS...........eiiiuiiieiii ettt C-35
Operations and Support REqUITEMENtS.........ccccveeeeieeeiiieeiieeeie e C-36
Safety/Warning Device Requirementsccceeecvveeeeiieeniieeniee e cree e C-36
Protective Equipment REqUITemMEnts............ccocvvieiiieeeiieeiee et C-37
Procedures and Training ReEqUITEMENtScceeevieeeiiiieeiieeiee e C-37
Managing CRANEE........c.eeviiieeiiieeiieeeieeesteeeste e et e e e eeesteeessseeessseeessaeessseessseeessseeennnes C-37
Software Configuration Control Board.............cccuveeiiiieeiiieeiieceeccee e C-37

v

Software System Safety Handbook

Table of Contents

D. COTS AND NDI SOFTWARE

Dl INIPOAUCTION ..ttt ettt ettt ettt et e s e et e e s aeeenneeneeas D-1
D.2 Related ISSUEScouiiiiieiie et ettt et D-2
D.2.1 Managing CRANEE.........c.veeevieiiiie e et tee et e et e e et eesaeeesaseeessseeesseeesseesnneens D-2
D.2.2 Configuration Management...........c..ceecuieeriieeiiieeiieeeiieesoreeeereeesreeesreeessseesnsseesnseees D-2
D.2.3 Reusable and Legacy SOftWare..........coccviiieiiieiiieeieecee e D-3
D.3 Applications of Non-Developmental [tems...........cccceevveeeriiiiiiieniieeeie e D-3
D.3.1 Commercial-Off-the-Shelf Software...........cccooiiiiiiiiie e, D-3
D4 RedUCING RISKS....ccciiiiiiiiciii ettt ettt e e e e e saae e eareeenaeeennneas D-5
D4.1 Applications SOftWare DESIZN.......c.eeeiiieiiiiiiiiieeciee e e D-5
D4.2 MiddIEWare OF WIaPPETS....uvieeirieeiieeeiieesteeeteeeteeesteeeseteeeeeeesreeessseeessseesseeensseens D-6
D43 MeSSAZE PTOtOCO]eiieiiieeiieeee e D-7
D.4.4 Designing AroUnd It.........ccviieiiiieiiieeeecee e e e D-7
D.4.5 Analysis and Testing of NDI SOftware..........ccccuveeviiieriieeniiece e D-8
D.4.6 Eliminating Functionality..........cccccuieiiiiiiiiiiieeieeeie e e D-8
D.4.7 RUN-TIME VETSIONS ...ttt sttt sttt st e bee e D-9
D.4.8 WatChdOZ TIMETSeeeiiieeiiie ettt et e et e e e et eeareeeaaeeesaeesnneeas D-9
D.4.9 Configuration Management...........c.c.ceecueeerueeeiiieeeiieeeieeesreeesreeesreeessreeessseesnsseesseees D-9
D.4.10 PrOtOTYPING ..eeeeeiieeiieeetee ettt e st e e st e e e ta e e e sbeeeaseeessaeensseeennnes D-10
D4.11 TSI ..ottt ettt ettt et e a e et ae e et e e naeeenee D-10
D.5 SUIMMATY oottt e e et e e e e e e e e sateeeeenaseeeesnsaeeeennseees D-10
E. GENERIC REQUIREMENTS AND GUIDELINES

E.l INEEOAUCTION ...ttt ettt et ettt e bt e et e saeesareens E-1
E.1.1 Determination of Safety-Critical Computing System Functions............c.cceevveenneee. E-1
E.2 Design And Development Process Requirements And Guidelines..........cccccccvvveeuveeneen. E-2
E.2.1 Configuration CONLIOLceeiuiiiiiiieeie ettt e e e ennee s E-2
E.2.2 Software Quality ASSUrance Programcccceeeveeeeiiiieiiie e E-3
E23 TWO Person RULEcoc.iiiiiiiieeee e E-3
E2.4 Program Patch Prohibitioncc.eieeiiiiiiiiiiiceeeceeee e E-3
E.2.5 Software Design Verification and Validationcccoeeveeeiiiiiieeiiieeecie e, E-3
E.3 System Design Requirements And Guidelinesccoccvveevieeeiiieniieeiiee e E-5
E.3.1 Designed Safe Statescccuiieiiiieiiieeee e E-5
E3.2 Standalone COMPULETceciiieiiieeiieeeiee ettt e e rre e et eeete e e s aeeesreeesnseeessneeenes E-5
E33 Ease 0f MAINENANCEeouieiiiiiieiie ettt ettt st E-5
E34 Safe State RETUIMeiiuiiiiiee e E-6
E3.5 Restoration of INterloCkscoouiiiiiiiiiiii e E-6
E.3.6 INPUL/OULPUL REZISIETS ...eeeveiieiiieciie ettt et e e es E-6
E.3.7 External Hardware Failures..........coooooiiiiiiiiiiiiiiiiee e E-6
E.3.8 Safety Kernel Failure........c.ooooiiiiiiiciice et E-6
E.3.9 Circumvent Unsafe COnditionseeoeeeiieiieiiiiiniieeie ettt E-6
E.3.10 Fallback and RECOVETYcccuiiiiiiieiie et et E-6
E3.11 STMULALOTS .ttt ettt ettt e ettt e st e e bt e ssbeebeesaneens E-6
E.3.12 SYStEM EITOTS LOZ ...niviiiieiiiie ettt ettt e et e e e eaae e e eesaaeeeesnnneeeenes E-7
E.3.13 Positive Feedback MechaniSmsccoceeriiiiiiiiiiiiiiieeee e E-7

Software System Safety Handbook

Table of Contents

E3.14
E.3.15
E.3.16
E.3.17
E.3.18
E.3.19
E.4
E.4.1
E.4.2
E4.3
E.4.4
E.4.5
E.4.6
E.5
E.5.1
E.5.2
E53
E.54
E.6
E.6.1
E.6.2
E.6.3
E.6.4
E.7

E.7.1
E.7.2
E.7.3
E.7.4
E.7.5
E.7.6
E.7.7
E.7.8
E.8

E.8.1
E.8.2
E.83
E.8.4
E.8.5
E.8.6
E.8.7
E.8.8
E.9

E.9.1
E9.2

Peak Load CONAItIONSc.eeruiiiiiiiiieiieiieeee ettt sttt st E-7
ENdurance ISSUESoouiiiiiiiiiiieee e e E-7
Error HANAIING......ccviiiiieece ettt e e E-8
Redundancy Managementcccvieiiieeiiieeiieeciee ettt evee e e E-9
Safe Modes ANd RECOVETY.......oiiviiieiieeieeee ettt E-10
Isolation And MOAUIATILYc.eeeeieiieiiiieciiee e e E-10
Power-Up System Initialization Requirementsccceecveeevieeeiieeciie e eeiee e E-11
Power-Up INttialiZationccueeeiuiieiiiiecie et E-11
POWET FaUILSooiiiiii e E-11
Primary Computer Failure...........cccvioiiiieiiie et E-12
Maintenance INterloCksc.ooiiiiiiiiiiii e E-12
System-Level CheCK........c.iiiiiiiiieeeeeee ettt E-12
Control FIOW DEefectscc.eoiiiiiiiiieiiee e E-12
Computing System Environment Requirements And Guidelines............c.cceeveeennennnee. E-14
Hardware and Hardware/Software Interface Requirements.............cccccceeeveeenennnee. E-14
CPU SEIECHION ...ttt ettt sttt e b e st e e b e eaee E-15
MiInimum ClOCK CYCLESvviiiiiiiiieeiiieeeee ettt E-16
Read Only MEMOTIES.......ccccviiiiiieeiiie ettt estee et eeeae e e e e e sareeeeaeeenseeenns E-16
Self-Check Design Requirements And Guidelinescceccveeevvieeciieencieeeniee e, E-16
WatChdOZ TIMETSeeeeiiieiiie ettt e e e e aa e e eraeeenseeeenns E-16
MEMOTY CRECKS ...eviiiiiiieiiie ettt et e e e e eaveeesaeeenaeeeans E-16
Fault DEetECTION ..ottt ettt E-16
Operational ChECKSiiiuiiiiiiiece e e e E-17
Safety-Critical Computing System Functions Protection Requirements
AN GUIAEIINES ...ttt ettt et e E-17
Safety Degradationccuvieciieiiieeeieeee e E-17
Unauthorized INteractionoiiuiiiiiiiiiiieeieeie et E-17
UNAULNOTIZEA ACCESS ...uveeniieiieiiie ettt ettt ettt ettt ettt e e e ens E-17
Safety Kernel ROMccoiiiiiiiiiieceeee ettt e E-17
Safety Kernel Independence............oocuvieeiiieiiieeiieceie e E-17
INAAVETtENt JUIMPS ...oiiiiiieciie ettt e e e e e e e eae e e erraeeeasaeeenes E-17
Load Data INTEEIILY.....cccvviiiiiiieiie ettt e ae e e e sar e e e eaeeenaeeenns E-18
Operational Reconfiguration INte@rity..........ceevvveeiiieiiiiieiiie e E-18
Interface Design ReqUITEMENTSccouvieiiiiiiiiiieciie e e e E-18
Feedback LOOPS.....ccuuiiiiiiieiie ettt et e e e e e e e eebe e e E-18
Interface CONIIOL........ooiiiiiiie et s E-18
DeCiSION STALEMENLSeeeutieiieiiieiie ettt ettt ettt et e st ebeeseeeeneeens E-18
Inter-CPU COmMMUNICAIONSeeitieriieeiieniieeieeeite et esiee et esiee et siee e e seee st enaee e E-18
Data TransSfer MESSAZESc.vvieiiieeiiieeiieeeieeerireeeee st e eereeeareeeraeesreeensaeesnseeennes E-18
External FUNCHIONS......c...ooiuiiiiiiiieieeee et E-19
Input Reasonableness Checkscocviieiiieeiiiecieeceeeeee e E-19
Full Scale RepreSentationscecveeeiiieeiiieeeiieeeiee et e eeeeeeieeesree s e eeaeeeeaee e E-19
Human INterfaceooouiiiiiiii e E-19
Operator/Computing System Interface.........ccccveeviieeiiierciiecie e E-19
Processing Cancellationc.ccocvieiiiiieiiieeciie et E-20

vi

Software System Safety Handbook

Table of Contents

E.9.3 Hazardous Function Initiationcccueeeiiieiiieeiiie e E-20
E9.4 Safety-Critical DISPIAYS.......cccuieiiieeeiieeeiie ettt e e e aae e e E-21
E.9.5 Operator ENry EITOTSvvviiiiiiee ettt E-21
E.9.6 Safety-CritiCal ALCTES......ccveieceiieeiie ettt e e e e e e eeaeas E-21
E.9.7 Unsafe STtuation ALCTLSeeecvieeiiieiiie ettt eree s e e e e eeaeesneeeenns E-21
E.9.8 UNSAfe State ALCTES....eeiuiieeiiieciie et eee et et e e e et eeeve e e sr e e e sareeensaeesaseeeeans E-21
E.10 Critical Timing And Interrupt FUNCtIONS...........coeviieeiiiieeieeeieeeee e E-21
E.10.1 Safety-Critical TIMING........ccceviieiiieeciie et e e e eeaeas E-21
E.10.2 Valid INTEITUPLS. ...c.veeiiieeieiieie ettt sttt et enaeeneas E-22
E.10.3 RECUISIVE LLOOPS ..ottt ettt e ree e e v e e e e e enaeeenns E-22
E.10.4 TIME DEPENACIICY.....eiiiiiieiiieciieeeee ettt e e e e e e ar e e e raeesaneeeenns E-22
E.11 Software Design And Development Requirements And Guidelinesc.cc.u........ E-22
E.11.1 Coding Requirements/ISSUESceecuiieiiieeciieeiiee et eieeeeieeeereeeeveeeseveeesenee e E-22
E.11.2 MOAUIAT COAE.....eeiiiiieiiieciee et e eee e e e e s e e sareeesseeenseeennes E-24
E.11.3 NUMDET Of MOAUIESoeviiiiiiieeieeee e eeeae e E-24
E.11.4 EXecution Pathoooviiiiiiiee e e E-24
E.11.5 Halt INStIUCHIONS ...ttt et e et e e e e sab e e esaeeenseeenees E-25
E.11.6 SiNgle PUIPOSE FIleSoiiiuiiiiiiiieieeeeeee et e E-25
E.11.7 UnNNECesSary FEATUTES ...ccouvvvieeiiiiieeeeiiie ettt ee ettt e e et ee et e e e ae e e e e neaeeeennes E-25
E.11.8 Indirect Addressing Methodscoocviiiiiieiiiieeeeee e E-25
E.11.9 Uninterruptable Codeccviiiiiiieiieeieeeee e e E-25
E.11.10 Safety-Critical FIleS......cuiiiiiiiiiiieeiie ettt et e eve e e E-25
| D30 O B U 10 Y Ta 1LY, (55 1410 oy 2SR E-25
E.11.12 Overlays Of Safety-Critical Software Shall All Occupy The Same

AMOUNE Of MEIMOTYeviiiiiiieiiie ettt tee et e e e e areeesaeesnseeeeans E-26
E.11.13 Operating System FUNCHONSccceeviiiieiiiieiiieeiie et E-26
D A 7' 01011 (<) USRS E-26
E.11.15 Flags and Variablescccuieiiiieiiieeiie ettt e E-26
E.11.16 Loop Entry POINtoooiiiiiiieeie ettt et E-26
E.11.17 Software Maintenance DeSi@N........c.c.ceccuiieriiieiiieiiieeciee et evee e e e eaee e E-26
E.11.18 Variable Declaration...........cccueeciieiciiieiiieeeiee et e e ree e E-26
E.11.19 Unused Executable Codeccoiiiiiiiiiiiiiieiiieieee ettt E-26
E.11.20 Unreferenced Variablesccooieiiiiiiiiiiiiieieieeee e E-26
E.11.21 AsSignment StatemMENtSccccuieeeieeeiiieeiieeeiieeeieeesieeesteeesaeeesereeesaeessseessneesnnes E-27
E.11.22 Conditional StatemeEntscceeeeiieeiiieeiiieeiieeeeeeeireeeieeeeaeeeereeesreeeseseeeesee e E-27
E.11.23 Strong Data TYPING ...cccuveeecuiieeiieeciieesieeesitee et e eieeesaeeesteeessaeesssaeesaeesnseeessseeennnes E-27
E.11.24 Timer Values ANNOtatedccoeeviieeiiiiieiie ettt E-27
E.11.25 Critical Variable Identification............coocueiiieiiiiiiinii et E-27
E.11.26 Global Variables.........ccouiiiiiiiiiieciieeeeee et E-27
E.12 Software Maintenance Requirements And Guidelinescccceeveeveieeeciieenieeeeeeenne, E-27
E.12.1 Critical Function Changes..........cccvvieeiiieeiiiieeiie et eeree e e e e e e e E-28
E.12.2 Critical FIrmware Changes..........cccuveeviieeiiieeiee e eereeeeree e e e e eireesveeessee e E-28
E.12.3 Software Change MediUm.........ccccueeeiuiieeiiieeeiie et e e e E-28
E.12.4 Modification Configuration Controlcccveeiiieeiiieeiieecie e E-28
E.12.5 Version IdentifiCation.........c.ccoccviieiiieiiiiece et E-28

vii

Software System Safety Handbook

Table of Contents

E.13 Software Analysis ANd TeSTING........ceeiireeiiiieiiieeeieeectee et eeeeereeeereeeevee e e eaaee e E-28
E.13.1 General Testing GUIACIINESceevieiiiieiiie ettt e E-28
E.13.2 Trajectory Testing for Embedded Systemsccceeeevieieiiiicieecieeceeecee e E-30
E.13.3 FOrmal Test COVETAZEcccvviiiiiieiiie ettt eetee et e e e et e e e rae e sre e e aeeenseeenees E-30
E.13.4 GO/NO-GO Path TeSHING......veeeieiiieiiieeiieeeiee ettt e re e e e e e e sreeeeens E-30
E.13.5 INput Failure MOEScccuviieiiieeiie ettt serae e e E-30
E.13.6 Boundary Test CONAItIONS..........ccecuiiiiiieeiiieeie e esreeesree e e reeesreeeseveeeenes E-30
E.13.7 Input Rata RALESeeieiiiiiieeiiieeee et et e e ree e e e E-30
E.13.8 710 VAl TESHINE....cecviiiiiiieciie ettt eee et et eesaeeeeaeeeaaeesreeesaseeesseeenseeennes E-31
E.13.9 LT o4 (s (o) 4 I] o VTSRS E-31
E.13.10 Operator Interface TeStING.......cccueeevuiieeiiiieeiieeciee et E-31
E.13.11 Duration Stress TEeSTINEeerueiiiieriieiiieiie ettt ettt ettt E-31
F. LESSONS LEARNED

F.1 Therac Radiation Therapy Machine Fatalitiesccccoevviiiriiiiiiiiiiiee e F-1
F.1.1 SUMMATY ..eviiieiiiiiee e e et e e et e e e et a e e e esasbeeeeessaeeeeansseaesssnsseeeennnns F-1
F.1.2 QS 2 101 £ USSR F-1
F.1.3 Lessons Learnedoouiiiieiiiiiiee e F-2
F.2 Missile Launch Timing Causes Hangfire..........ccoccvveviiiiiiiieiiiicieeceeeee e F-2
F.2.1 SUIMIMATY ..vviiieiiiiee et e e e e e e et e e e e nsteeeeessaeeesasssaaeessnsseeesnnnns F-2
F.2.2 QS 2 101 £ SRR F-2
F23 Lessons Learnedcooviiuieiiiiiieie et F-3
F.3 Reused Software Causes Flight Controls to Shut Down...........cccccveeiiiiiiiieecieecie e, F-3
F.3.1 SUIMIMATY ..vviiieiiiiiee et et e e e e e e et eeesensteeeeessaeeeeansseeeessnsseeesannns F-3
F.3.2 SR & 1o] 1RSSR F-4
F33 Lessons Learnedcoouieuieiiiiiiee e F-4
F.4 Flight Controls Fail at Supersonic Transitioncc.eeeevieeiieeeieeeeiee e eereeesvee e F-4
F.4.1 SUIMIMATY ..eviiieiiiiiee et ettt e e et e e e et eeeesnsteeeeessaeeeeansseeesssnsseeesnnns F-4
F.4.2 QS 2 101 £ SRR F-5
F43 Lessons Learnedoouieiieiiiiiieie e F-5
F.5 Incorrect Missile Firing from Invalid Setup Sequence..........cccoeeeveeeiiienieeecieecieeeieees F-5
F.5.1 SUIMIMATY ..eviiieiiiiiee et e et e e et e e e e ete e e e esnsteeeeesaaeeesansseaeessnsseeesnnnns F-5
F.5.2 QS 2 101 £ SRR F-6
F.53 Lessons Learnedcoouiiiieiiiiiiee e F-6
F.6 Operator’s Choice of Weapon Release Overridden by Software..........cccoeevevveeeieenneen, F-6
F.6.1 SUIMIMATY ..eviiieiiiiiee et e e et e e e e eteeeessssteeeeessaeeeeansseaesssnsseeesnnnns F-6
F.6.2 QS 2 101 £ SRS F-7
F.6.3 Lessons Learnedcooveeuieiiiiiieeeee et F-7

G. PROCESS CHART WORKSHEETS

H. SAMPLE CONTRACTUAL DOCUMENTS

H.1 Sample Request for Proposaloocviieiiiiiiiiiieeeeceeee et H-1
H.2 Sample Statement 0f WOTKcoouiiiiiiiiie e e H-2
H.2.1 SYSEM SATCLY ...eeiviiieiii e et e e e e areesaaeeenaeeens H-2
H.2.2 SOTIWATE SATELY ..eveieiie et et e et et e e st e e s beeesaseeensaeens H-3

viii

Software System Safety Handbook

Table of Contents

LIST OF FIGURES

Figure 2-1: Management Commitment to the Integrated Safety Process........ccccceevveeeveeenieennns 2-18
Figure 2-2: Example of Internal System INterfaces..........ccccvvvviiieciiecciiieeiiecieeeee e 2-19
Figure 2-3: Weapon System Life CYCIec.uiiiiiiiiiiieiiieiee ettt 2-20
Figure 2-4: Relationship of Software to the Hardware Development Life Cycle...................... 2-21
Figure 2-5: Grand Design Waterfall Software Acquisition Life Cycle Model 2-22
Figure 2-6: Modified V Software Acquisition Life Cycle Modelcccevevieeciienciienieenee, 2-23
Figure 2-7: Spiral Software Acquisition Life Cycle Modelccceoevieeiiieiiiiicieeeie s 2-24
Figure 2-8: Integration of Engineering Personnel and Processes.........cccoecvveviieeciievcieenieenne, 2-26
Figure 2-9: Handbook Layoutcccciiiiiiieiiieciecce et 2-27
Figure 2-10: Section 4 FOIMAat...........ccouiiiiiiiiiiiieeiie ettt eeae e e 2-28
Figure 3-1: Types Of RISK......cocuiiiiiiieiie ettt e e e es 3-3
Figure 3-2: Systems Engineering, Risk Management Documentation............cccccecuveeeveeennveeennee. 3-6
Figure 3-3: Hazard Reduction Order of Precedenceccceecvvreeiieiciiecciieeee e 3-16
Figure 4-1: SECtion 4 CONLENLS.....ccuvieieeiieeiieeeiieeeieeeeieeesteeesiteeeseaeeesaaeesseeesseeessseeessseeensseesssens 4-1
Figure 4-2: Who is Responsible fOr SSS? ...t 4-2
Figure 4-3: Example of Initial Process Chart............ccccueeeiiieiiiiiiiieeeeeeeeee e 44
Figure 4-4: Software Safety Planningccccvveeiiiiiiiiiiiiic e 4-6
Figure 4-5: Software Safety Planning by the Procuring Authorityccccoeevvveviiieecieecieeeen. 4-7
Figure 4-6: Software Safety Planning by the Developing Agency.........ccocveeeveeecieeecieeeeveeenen. 4-8
Figure 4-7: Planning the Safety Criteria Is Importantcccoeeevieeriieeiiieccieeeee e 4-10
Figure 4-8: Software Safety Program INterfacescceeeeveeiciiiciiie i 4-12
Figure 4-9: Ultimate Safety Responsibility.........ccccveiiiiiiiiieiiiecieeee e 4-14
Figure 4-10: Proposed SSS Team Membershipccccecciieeiiiieiiieeiiieecee e 4-15
Figure 4-11: Example of Risk Acceptance MatriX.........cceccueeeeieeeiiieeriieenieeeeeeeeieeeeevee e 4-17
Figure 4-12: Likelihood of Occurrence EXample.........cccccccvieiiieiiiiiiciieeiee e 4-19
Figure 4-13: Examples of Software Control Capabilitiesccccouveevvieeiiiieeiiieeiie e 4-19
Figure 4-14: Software Hazard Criticality Matrix, MIL-STD-882Cccceeeviieeciieeiieeeieens 4-20
Figure 4-15: Software Safety Program Managementcccceeevieeeriieeiiieeciieeciie e 4-21
Figure 4-16: Software Safety Task Implementation...........cccceccvveeriiieriieeiieecie e 4-25
Figure 4-17: Example POA&M Schedule...........cccouiiiiiiiiiiiiiieceeeeece e 4-27
Figure 4-18: Preliminary Hazard List Developmentcccccccveeriiieiiieeiieeciieeciee e 4-29
Figure 4-19: An Example of Safety-Critical FUNCtionscccceeeveeriiieeieeecieeee e 4-31
Figure 4-20: Tailoring the Generic Safety Requirementscccceeveveeeeieeecieescie e 4-32
Figure 4-21: Example of a Generic Software Safety Requirements Tracking

WOTKSREEL. ... 4-33
Figure 4-22: Preliminary Hazard ANalySiS.......cccccccvieeiiiiiiiieeciie ettt 4-34
Figure 4-23: Hazard Analysis SEZMENt..........cccveeiiiieiiiieiiecie ettt 4-35
Figure 4-24: Example of a Preliminary Hazard Analysis.........cccceevveerciieniiieiiiieeiee e 4-37
Figure 4-25: Derive Safety-Specific Software Requirements............ccceeeeveeieciieeiieencee e, 4-38
Figure 4-26: Software Safety Requirements Derivationc.cceccveeveiveercieeecieeeciee e 4-39
Figure 4-27: In-Depth Hazard Cause ANalYSis.......c..ceccueieriieeiiieeeiie et 4-40
Figure 4-28: Preliminary Software Design AnalysiS.........cccceeeivereiieeriiieeiieeeiee e 4-42

X

Software System Safety Handbook

Table of Contents

Figure 4-29: Software Safety Requirements Verification Tree.........ccocvveeevieecieencieeeiieeeieens 4-44
Figure 4-30: Hierarchy Tree EXample........cccoeooiiiiiiiiiiiiciiece et 4-46
Figure 4-31: Detailed Software Design ANalysSiS.......ccccieerieeriieeriiieeriie e eeieeeveeesveeeevee e 4-48
Figure 4-32: Verification MethOods..........cooouiieiiiieiiiceieceee et 4-49
Figure 4-33: Identification of Safety-Related CSUSccceeviiiiiiiiiciieecieeeeeee e 4-50
Figure 4-34: Example of a Data Flow Diagramc.cccccveeiiiiiiieiiiieccieeeee e 4-55
Figure 4-35: Flow Chart EXamPIescocoiiieiiiieiieeieeee ettt 4-56
Figure 4-36: System Hazard ANalysSiS........ccccecuieeiiiieeiiieeiieeciee ettt 4-60
Figure 4-37: Example of a System Hazard Analysis Interface Analysis.........cccccceveeverveenreennee. 4-61
Figure 4-38: Documentation of Interface Hazards and Safety Requirements.............ccceueee. 4-62
Figure 4-39: Documenting Evidence of Hazard Mitigation..........c.cccecveveeiieecieenciee e 4-63
Figure 4-40: Software Safety Test Planningccccccvieiiiieiiiieciie e 4-64
Figure 4-41: Software Safety Testing and ANalysiS........cccvvverciiieriieeeriie e 4-66
Figure 4-42: Software Requirements VerifiCationccceeevieeriieeriiieeniee e e evee e 4-70
Figure 4-43: Residual Safety Risk ASSESSMENt..........cccuvieiiieeiiieeieeeiieecee et 4-72
Figure C.1: Contents of a SWSPP - IEEE STD 1228-1994.........oooiiiiiiiieeeeeeeeee e C-3
Figure C.2: SSHA & SHA Hazard Record Example........cccocovvieiiiiiiiieiiiececee e C-7
Figure C.3: Hazard Requirement Verification Document Examplec.ccoccveeveiiencieenneeenee. C-9
Figure C.4: Software Safety SOW Paragraphs.........cccccveeeiiieoiiieiieecie et C-13
Figure C.5: Generic Software Configuration Change Process.........cccoevveevvieecveencieeeiieeeieens C-38
LIST OF TABLES
Table 2-1: SUIVEY RESPOMNSE....c..eiiuiiiiieiiieiieie ettt seeenbeesee e 2-17
Table 3-1: Hazard SEVEIILY........ccccvieiiieiiieiieeie ettt ettt seae et saeeeabeesseeenseesseeenne 3-12
Table 3-2: Hazard Probabilitycccooiiiiiiiiiieiiiieeieee ettt 3-13
Table 3-3: HRI IMALTIX . ..c.eertieiieiieieeiesitesieete sttt sttt ettt sttt ettt sbe et et e st et eseeenbeenees 3-14
Table 4-1: Acquisition Process Trade-off ANalyses.........cccevveeiieriienieeiiieniecieeeecee e 4-35
Table 4-2: Example of a Software Safety Requirements Verification MatriXcccccecuenneee. 4-44
Table 4-3: Example 0f @ RTMccooiiiiiiiiieiieeeeee ettt s 4-45
Table 4-4: Safety-critical FUNCtion MatriX.........cocveeiiieriieeiieiienie et eee e 4-45
Table 4-5: Data Item EXaAmPIEcc.covuiiiiiiiiiiiicieeeeeee ettt 4-54

Software System Safety Handbook

Executive Overview

1. Executive Overview

Since the development of the digital computer, software continues to play an important and
evolutionary role in the operation and control of hazardous, safety-critical functions. The
reluctance of the engineering community to relinquish human control of hazardous operations
has diminished dramatically in the last 15 years. Today, digital computer systems have
autonomous control over safety-critical functions in nearly every major technology, both
commercially and within government systems. This revolution is primarily due to the ability of
software to reliably perform critical control tasks at speeds unmatched by its human counterpart.
Other factors influencing this transition is our ever-growing need and desire for increased
versatility, greater performance capability, higher efficiency, and a decreased life cycle cost. In
most instances, software can meet all of the above attributes of the system’s performance when
properly designed. The logic of the software allows for decisions to be implemented without
emotion, and with speed and accuracy. This has forced the human operator out of the control
loop; because they can no longer keep pace with the speed, cost effectiveness, and decision
making process of the system.

Therefore, there is a critical need to perform system safety engineering tasks on safety-critical
systems to reduce the safety risk in all aspects of a program. These tasks include the software
system safety (SSS) activities involving the design, code, test, Independent Verification and
Validation (IV&V), operation & maintenance, and change control functions of the software
engineering development process.

The main objective (or definition) of system safety engineering, which includes SSS, is as
follows:

“The application of engineering and management principles, criteria, and techniques to
optimize all aspects of safety within the constraints of operational effectiveness, time, and cost
throughout all phases of the system life cycle.”

The ultimate responsibility for the development of a “safe system” rests with program
management. The commitment to provide qualified people and an adequate budget and schedule
for a software development program begins with the program director or program manager (PM).
Top management must be a strong voice of safety advocacy and must communicate this personal
commitment to each level of program and technical management. The PM must support the
integrated safety process between systems engineering, software engineering, and safety
engineering in the design, development, test, and operation of the system software.

Thus, the purpose of this document (hereafter referred to as the Handbook) is as follows:

Provide management and engineering guidelines to achieve a reasonable level of assurance
that software will execute within the system context with an acceptable level of safety risk.

1-1

Software System Safety Handbook

Introduction to the Handbook

2. Introduction to the Handbook

2.1 Introduction

All members of the system development team should read section 2 of the Software System
Safety Handbook (SSSH). This section discusses the following major subjects:

* The major purpose for writing this Handbook
* The scope of the subject matter that this Handbook will present
* The authority by which a SSS program is conducted

* How this Handbook is organized and the best procedure for you to use, to gain its full
benefit.

As a member of the software development team, the safety engineer is critical in the design, and
redesign, of modern systems. Whether a hardware engineer, software engineer, “safety
specialist,” or safety manager, it is his/her responsibility to ensure that an acceptable level of
safety is achieved and maintained throughout the life cycle of the system(s) being developed.
This Handbook provides a rigorous and pragmatic application of SSS planning and analysis to be
used by the safety engineer.

SSS, an element of the total system safety and software development program, cannot function
independently of the total effort. Nor can it be ignored. Systems, both “simple” and highly
integrated multiple subsystems, are experiencing an extraordinary growth in the use of computers
and software to monitor and/or control safety-critical subsystems and functions. A software
specification error, design flaw, or the lack of initial safety requirements can contribute to or
cause a system failure or erroneous human decision. Preventable death, injury, loss of the
system, or environmental damage can result. To achieve an acceptable level of safety for
software used in critical applications, software safety engineering must be given primary
emphasis early in the requirements definition and system conceptual design process. Safety-
critical software must then receive a continuous emphasis from management as well as a
continuing engineering analysis throughout the development and operational life cycles of the
system.

This SSSH is a joint effort. The U.S. Army, Navy, Air Force, and Coast Guard Safety Centers,
with cooperation from the Federal Aviation Administration (FAA), National Aeronautics and
Space Administration (NASA), defense industry contractors, and academia are the primary
contributors. This extensive research captures the “best practices” pertaining to SSS program
management and safety-critical software design. The Handbook consolidates these contributions
into a single, user-friendly resource. It aids the system development team in understanding their
SSS responsibilities. By using this Handbook, the user will appreciate the need for all disciplines
to work together in identifying, controlling, and managing software-related hazards within the
safety-critical components of hardware systems.

2-1

Software System Safety Handbook

Introduction to the Handbook

To summarize, this Handbook is a “how-to” guide for use in the understanding of SSS and the
contribution of each functional discipline to the overall goal. It is applicable to all types of
systems (military and commercial), in all types of operational uses.

2.2 Purpose

The purpose of the SSSH is to provide management and engineering guidelines to achieve a
reasonable level of assurance that the software will execute within the system context with an
acceptable level of safety risk'.

2.3 Scope

This Handbook is both a reference document and management tool for aiding managers and
engineers at all levels, in any government or industrial organization. It demonstrates “how to” in
the development and implementation of an effective SSS process. This process minimizes the
likelihood or severity of system hazards caused by poorly specified, designed, developed, or
operation of software in safety-critical applications.

The primary responsibility for management of the SSS process lies with the system safety
manager/engineer in both the developer’s (supplier) and acquirer’s (customer) organization.
However, nearly every functional discipline has a vital role and must be intimately involved in
the SSS process. The SSS tasks, techniques, and processes outlined in this Handbook are basic
enough to be applied to any system that uses software in critical areas. It serves the need for all
contributing disciplines to understand and apply qualitative and quantitative analysis techniques
to ensure the safety of hardware systems controlled by software.

This Handbook is a guide and is not intended to supersede any Agency policy, standard, or
guidance pertaining to system safety (MIL-STD-882C) or software engineering and development
(MIL-STD-498). It is written to clarify the SSS requirements and tasks specified in
governmental and commercial standards and guideline documents. The Handbook is not a
compliance document but a reference document. It provides the system safety manager and the
software development manager with sufficient information to perform the following:

* Properly scope the SSS effort in the Statement of Work (SOW),

e Identify the data items needed to effectively monitor the contractor’s compliance with the
contract system safety requirements, and

* Evaluate contractor performance throughout the development life cycle.

The Handbook is not a tutorial on software engineering. However, it does address some
technical aspects of software function and design to assist with understanding software safety. It
is an objective of this Handbook to provide each member of the SSS Team with a basic
understanding of sound systems and software safety practices, processes, and techniques.

! The stated purpose of this Handbook closely resembles Nancy Leveson’s definition of Software
System Safety. The authors would like to provide the appropriate credit for her implicit
contribution.

2-2

Software System Safety Handbook

Introduction to the Handbook

Another objective is to demonstrate the importance of each technical and managerial discipline to
work hand-in-hand in defining software safety requirements (SSR) for the safety-critical software
components of the system. A final objective is to show where safety features can be designed
into the software to eliminate or control identified hazards.

2.4 Authority/Standards

Numerous directives, standards, regulations, and regulatory guides establish the authority for
system safety engineering requirements in the acquisition, development, and maintenance of
software-based systems. Although the primary focus of this Handbook is targeted toward
military systems, much of the authority for the establishment of Department of Defense (DOD)
system safety, and software safety programs, is derived from other governmental and commercial
standards and guidance. We have documented many of these authoritative standards and
guidelines within this Handbook. First, to establish their existence; second, to demonstrate the
seriousness that the government places on the reduction of safety risk for software performing
safety-critical functions; and finally, to consolidate in one place all authoritative documentation.
This allows a PM, safety manager, or safety engineer to clearly demonstrate the mandated
requirement and need for a software safety program to their superiors.

24.1 Department of Defense

Within the DOD and the acquisition corps of each branch of military service, the primary
documents of interest pertaining to system safety and software development include DOD
Instruction 5000.1, Defense Acquisition; DOD 5000.2R, Mandatory Procedures for Major
Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS)
Acquisition Programs; MIL-STD-498, Software Development and Documentation; and MIL-
STD-882D, Standard Practice for System Safety. The authority of the acquisition professional to
establish a software safety program is provided in the following paragraphs. These paragraphs
are quoted or summarized from various DOD directives and military standards. They clearly
define the mandated requirement for all DOD systems acquisition and development programs to
incorporate safety requirements and analysis into the design, development, testing, and support of
software being used to perform or control critical system functions. The DOD documents also
levy the authority and responsibility for establishing and managing an effective software safety
program to the highest level of program authority.

24.1.1 DODD 5000.1

DODD 5000.1, Defense Acquisition, March 15, 1996; Paragraph D.1.d, establishes the
requirement and need for an aggressive risk management program for acquiring quality products.

d. Risk Assessment and Management. PMs and other acquisition managers shall
continually assess program risks. Risks must be well understood, and risk management
approaches developed, before decision authorities can authorize a program to proceed
into the next phase of the acquisition process. To assess and manage risk, PMs and other
acquisition managers shall use a variety of techniques, including technology
demonstrations, prototyping, and test and evaluation. Risk management encompasses

2-3

Software System Safety Handbook

Introduction to the Handbook

identification, mitigation, and continuous tracking, and control procedures that feed back
through the program assessment process to decision authorities. To ensure an equitable
and sensible allocation of risk between government and industry, PMs and other
acquisition managers shall develop a contracting approach appropriate to the type of
system being acquired.

24.1.2 DOD 5000.2R

DOD 5000.2R, Mandatory Procedures for MDAPs and MAIS Acquisition Programs, March 15,
1996, provides the guidance regarding system safety and health.

4.3.7.3 System Safety and Health: The PM shall identify and evaluate system safety and
health hazards, define risk levels, and establish a program that manages the probability
and severity of all hazards associated with development, use, and disposal of the system.
All safety and health hazards shall be managed consistent with mission requirements and
shall be cost-effective. Health hazards include conditions that create significant risks of
death, injury, or acute chronic illness, disability, and/or reduced job performance of
personnel who produce, test, operate, maintain, or support the system.

Each management decision to accept the risks associated with an identified hazard shall
be formally documented. The Component Acquisition Executive (CAE) shall be the final
approval authority for acceptance of high-risk hazards. All participants in joint programs
shall approve acceptance of high-risk hazards. Acceptance of serious risk hazards may be
approved at the Program Executive Officer (PEO) level.

2.4.1.3 Military Standards

24.1.3.1 MIL-STD-882B, Notice 1

MIL-STD-882B, System Safety Program Requirements, March 30, 1984 (Notice 1, July 1, 1987),
remains on numerous government programs which were contracted during the 1980s prior to the
issuance of MIL-STD-882C. The objective of this standard is the establishment of a System
Safety Program (SSP) to ensure that safety, consistent with mission requirements, is designed
into systems, subsystems, equipment, facilities, and their interfaces. The authors of this standard
recognized the safety risk that influenced software presented in safety-critical systems. The
standard provides guidance and specific tasks for the development team to address the software,
hardware, system, and human interfaces. These include the 300-series tasks. The purpose of
each task is as follows:

Task 301, Software Requirements Hazard Analysis: The purpose of Task 301 is to
require the contractor to perform and document a Software Requirements Hazard
Analysis. The contractor shall examine both system and software requirements as well as
design in order to identify unsafe modes for resolution, such as out-of-sequence, wrong
event, inappropriate magnitude, inadvertent command, adverse environment,
deadlocking, failure-to-command, etc. The analysis shall examine safety-critical
computer software components at a gross level to obtain an initial safety evaluation of the
software system.

24

Software System Safety Handbook

Introduction to the Handbook

Task 302, Top-level Design Hazard Analysis: The purpose of Task 302 is to require the
contractor to perform and document a Top-level Design Hazard Analysis. The contractor
shall analyze the top-level design, using the results of the Safety Requirements Hazard
Analysis if previously accomplished. This analysis shall include the definition and
subsequent analysis of safety-critical computer software components, identifying the
degree of risk involved, as well as the design and test plan to be implemented. The
analysis shall be substantially complete before the software-detailed design is started.
The results of the analysis shall be present at the Preliminary Design Review (PDR).

Task 303, Detailed Design Hazard Analysis: The purpose of Task 303 is to require the
contractor to perform and document a Detailed Design Hazard Analysis. The contractor
shall analyze the software detailed design using the results of the Software Requirements
Hazard Analysis and the Top-level Design Hazard Analysis to verify the correct
incorporation of safety requirements and to analyze the safety-critical computer software
components. This analysis shall be substantially complete before coding of the software
is started. The results of the analysis shall be presented at the Critical Design Review
(CDR).

Task 304, Code-level Software Hazard Analysis: The purpose of Task 304 is to require
the contractor to perform and document a Code-level Software Hazard Analysis. Using
the results of the Detailed Design Hazard Analysis, the contractor shall analyze program
code and system interfaces for events, faults, and conditions that could cause or
contribute to undesired events affecting safety. This analysis shall start when coding
begins, and shall be continued throughout the system life cycle.

Task 305, Software Safety Testing: The purpose of Task 305 is to require the contractor
to perform and document Software Safety Testing to ensure that all hazards have been
eliminated or controlled to an acceptable level of risk.

Task 306, Software/User Interface Analysis: The purpose of Task 306 is to require the
contractor to perform and document a Software/User Interface Analysis and the
development of software user procedures.

Task 307, Software Change Hazard Analysis: The purpose of Task 307 is to require
the contractor to perform and document a Software Change Hazard Analysis. The
contractor shall analyze all changes, modifications, and patches made to the software for
safety hazards.

24.1.3.2 MIL-STD-882C

MIL-STD-882C, System Safety Program Requirements, January 19, 1993, establishes the
requirement for detailed system safety engineering and management activities on all system
procurements within the DOD. This includes the integration of software safety within the
context of the SSP. Although MIL-STD-882B and MIL-STD-882C remain on older contracts
within the DOD, MIL-STD-882D is the current system safety standard as of the date of this
handbook.

2-5

Software System Safety Handbook

Introduction to the Handbook

Paragraph 4. General Requirements, 4.1, System Safety Program: The contractor
shall establish and maintain a SSP to support efficient and effective achievement of
overall system safety objectives.

Paragraph 4.2, System Safety Objectives: The SSP shall define a systematic approach
to make sure that:..(b.) Hazards associated with each system are identified, tracked,
evaluated, and eliminated, or the associated risk reduced to a level acceptable to the
Procuring Authority (PA) throughout entire life cycle of a system.

Paragraph 4.3, System Safety Design Requirements: “...Some general system safety
design requirements are:..(j.) Design software controlled or monitored functions to
minimize initiation of hazardous events or mishaps.”

Task 202, Preliminary Hazard Analysis (PHA), Section 202.2, Task Description:
“...The PHA shall consider the following for identification and evaluation of hazards as a
minimum: (b.) Safety related interface considerations among various elements of the
system (e.g., material compatibilities, electromagnetic interference, inadvertent
activation, fire/explosive initiation and propagation, and hardware and software controls.)
This shall include consideration of the potential contribution by software (including
software developed by other contractors/sources) to subsystem/system mishaps. Safety
design criteria to control safety-critical software commands and responses (e.g.,
inadvertent command, failure to command, untimely command or responses,
inappropriate magnitude, or PA-designated undesired events) shall be identified and
appropriate actions taken to incorporate them in the software (and related hardware)
specifications.”

Task 202 is included as a representative description of tasks integrating software safety. The
general description is also applicable to all the other tasks specified in MIL-STD-882C. The
point is that software safety must be an integral part of system safety and software development.

24.1.3.3 MIL-STD-882D

MIL-STD 882D, Standard Practice of System Safety, replaced MIL-STD-882C in September
1999. Although the new standard is radically different than its predecessors, it still captures their
basic tenets. It requires that the system developers document the approach to produce the
following:

Satisfy the requirements of the standard,

Identify hazards in the system through a systematic analysis approach,
Assess the severity of the hazards,

Identify mitigation techniques,

Reduce the mishap risk to an acceptable level,

Verify and validate the mishap risk reduction, and

2-6

Software System Safety Handbook

Introduction to the Handbook

* Report the residual risk to the PM.

This process is identical to the process described in the preceding versions of the standard
without specifying programmatic particulars. The process described in this handbook meets the
requirements and intent of MIL-STD-882D.

Succeeding paragraphs in this Handbook describe its relationship to MIL-STDs-882B and 882C
since these invoke specific tasks as part of the system safety analysis process. The tasks, while
no longer part of MIL-STD-882D, still reside in the Defense Acquisition Deskbook (DAD). The
integration of this Handbook into DAD will include links to the appropriate tasks.

A caveat for those managing contracts: A PM should not blindly accept a developer’s proposal to
make a “no-cost” change to replace earlier versions of the 882 series standard with MIL-STD
882D. This could have significant implications in the conduct of the safety program preventing
the PM and his/her safety team from obtaining the specific data required to evaluate the system
and its software.

24.1.3.4 DOD-STD-2167A

Although MIL-STD-498 replaced DOD-STD-2167A, Military Standard Defense System
Software Development, February 29, 1988, it remains on numerous older contracts within the
DOD. This standard establishes the uniform requirements for software development that are
applicable throughout the system life cycle. The requirements of this standard provide the basis
for government insight into a contractor’s software development, testing, and evaluation efforts.
The specific requirement of the standard, which establishes a system safety interface with the
software development process, is as follows:

Paragraph 4.2.3. Safety Analysis: The contractor shall perform the analysis necessary to
ensure that the software requirements, design, and operating procedures minimize the
potential for hazardous conditions during the operational mission. Any potentially
hazardous conditions or operating procedures shall be clearly defined and documented.

24.1.3.5 MIL-STD-498

MIL-STD-4982, Software Development and Documentation, December 5, 1994, Paragraph
4.2.4.1, establishes an interface with system safety engineering and defines the safety activities
which are required for incorporation into the software development throughout the acquisition
life cycle. This standard merges DOD-STD-2176A and DOD-STD-7935A to define a set of
activities and documentation suitable for the development of both weapon systems and
automated information systems. Other changes include improved compatibility with incremental
and evolutionary development models; improved compatibility with non-hierarchical design
methods; improved compatibility with Computer-Aided Software Engineering (CASE) tools;
alternatives to, and more flexibility in, preparing documents; clearer requirements for
incorporating reusable software; introduction of software management indicators; added

2 1EEE 1498, Information Technology - Software Development and Documentation is the
demilitarized version of MIL-STD-498 for use in commercial applications

2-7

Software System Safety Handbook

Introduction to the Handbook

emphasis on software support; and improved links to systems engineering. This standard can be
applied in any phase of the system life cycle.

Paragraph 4.2.4.1, Safety Assurance: The developer shall identify as safety-critical
those Computer Software Configuration Items (CSCI) or portions thereof whose failure
could lead to a hazardous system state (one that could result in unintended death, injury,
loss of property, or environmental harm). If there is such software, the developer shall
develop a safety assurance strategy, including both tests and analyses, to assure that the
requirements, design, implementation, and operating procedures for the identified
software minimize or eliminate the potential for hazardous conditions. The strategy shall
include a software safety program that shall be integrated with the SSP if one exists. The
developer shall record the strategy in the software development plan (SDP), implement
the strategy, and produce evidence, as part of required software products, that the safety
assurance strategy has been carried out.

In the case of reusable software products [this includes Commercial Off-The-Shelf (COTS)],
MIL-STD-498 states that:

Appendix B, B.3, Evaluating Reusable Software Products, (b.): General criteria shall
be the software product’s ability to meet specified requirements and to be cost effective
over the life of the system. Non-mandatory examples of specific criteria include, but are
not limited to:..b. Ability to provide required safety, security, and privacy.

2.4.2 Other Government Agencies

Outside the DOD, other governmental agencies are not only interested in the development of safe
software, but are aggressively pursuing the development or adoption of new regulations,
standards, and guidance for establishing and implementing software SSPs for their developing
systems. Those governmental agencies expressing an interest and actively participating in the
development of this Handbook are identified below. Also included is the authoritative
documentation used by these agencies which establish the requirement for a SwSSP.

24.2.1 Department of Transportation

2421.1 Federal Aviation Administration

FAA Order 1810 “ACQUISITION POLICY” establishes general policies and the framework for
acquisition for all programs that require operational or support needs for the FAA. It implements
the Department of Transportation (DOT) Major Acquisition Policy and Procedures (MAPP) in its
entirety and consolidates the contents of more than 140 FAA Orders, standards, and other
references. FAA Order 8000.70 “FAA SYSTEM SAFETY PROGRAM?” requires that the FAA
SSP be used, where applicable, to enhance the effectiveness of FAA safety efforts through the
uniform approach of system safety management and engineering principles and practices.’

3 FAA System Safety Handbook, Draft, December 31, 1993

2-8

Software System Safety Handbook

Introduction to the Handbook

A significant FAA safety document is (RTCA)/DO-178B, Software Considerations In Airborne
Systems and Equipment Certification. Important points from this resource are as follows:

Paragraph 1.1, Purpose: The purpose of this document is to provide guidelines for the
production of software for airborne systems and equipment that performs its intended
function with a level of confidence in safety that complies with airworthiness
requirements.

Paragraph 2.1.1, Information Flow from System Processes to Software Processes:
The system safety assessment process determines and categorizes the failure conditions of
the system. Within the system safety assessment process, an analysis of the system
design defines safety-related requirements that specify the desired immunity from, and
system responses to, these failure conditions. These requirements are defined for
hardware and software to preclude or limit the effects of faults, and may provide fault
detection and fault tolerance. As decisions are being made during the hardware design
process and software development processes, the system safety assessment process
analyzes the resulting system design to verify that it satisfies the safety-related
requirements.

The safety-related requirements are inputs to the software life cycle process. To ensure that they
are properly implemented, the system requirements typically include or reference:

The system description and hardware definition;

Certification requirements, including Federal Aviation Regulation (United States), Joint
Aviation Regulations (Europe), Advisory Circulars (United States), etc.;

System requirements allocated to software, including functional requirements,
performance requirements, and safety-related requirements;

Software level(s) and data substantiating their determination, failure conditions, their
Hazard Risk Index (HRI) categories, and related functions allocated to software;

Software strategies and design constraints, including design methods, such as,
partitioning, dissimilarity, redundancy, or safety monitoring; and

If the system is a component of another system, the safety-related requirements and
failure conditions for that system.

System life cycle processes may specify requirements for software life cycle processes to aid
system verification activities.

24.271.2 Coast Guard

COMDTINST M41150.2D, Systems Acquisition Manual, December 27, 1994, or the “SAM”
establishes policy, procedures, and guidance for the administration of Coast Guard major
acquisition projects. The SAM implements the DOT MAPP in its entirety. The “System Safety
Planning” section of the SAM requires the use of MIL-STD-882C in all Level I, IlIA, and IV

Software System Safety Handbook

Introduction to the Handbook

acquisitions. The SAM also outlines system hardware and software requirements in the
“Integrated Logistics Support Planning” section of the manual.

Using MIL-STD-498 as a foundation, the Coast Guard has developed a “Software Development
and Documentation Standards, Draft, May 1995” document for internal Coast Guard use. The
important points from this document are as follows:

Paragraph 1.1, Purpose: The purpose of this standard is to establish Coast Guard
software development and documentation requirements to be applied during the
acquisition, development, or support of the software system.

Paragraph 1.2, Application: “This standard is designed to be contract specific applying
to both contractors or any other government agency(s) who would develop software for
the Coast Guard.”

Paragraph 1.2.3, Safety Analysis: “Safety shall be a principle concern in the design and
development of the system and it’s associated software development products.” This
standard will require contractors to develop a software safety program, integrating it with
the SSP. This standard also requires the contractor to perform safety analysis on software
to identify, minimize, or eliminate hazardous conditions that could potentially affect
operational mission readiness.

2.4.2.1.3 Aerospace Recommended Practice

“The Society of Automotive Engineers provides two standards representing Aerospace
Recommended Practice (ARP) to guide the development of complex aircraft systems. ARP4754
presents guidelines for the development of highly integrated or complex aircraft systems, with
particular emphasis on electronic systems. While safety is a key concern, the advice covers the
complete development process. The standard is designed for use with ARP4761, which contains
detailed guidance and examples of safety assessment procedures. These standards could be
applied across application domains but some aspects are avionics specific.”

The avionics risk assessment framework is based on Development Assurance Levels (DAL),
which are similar to the Australian Defense Standard Def(Aust) 5679 Safety Integrity Levels
(SIL). Each functional failure condition identified under ARP4754 and ARP4761 is assigned a
DAL based on the severity of the effects of the failure condition identified in the Functional
Hazard Assessment. However, the severity corresponds to levels of aircraft controllability rather
than direct levels of harm. As a result, the likelihood of accident sequences is not considered in
the initial risk assessment.

The DAL of an item in the design may be reduced if the system architecture:
e Provides multiple implementations of a function (redundancy),

» Isolates potential faults in part of the system (partitioning),

4 International Standards Survey and Comparison to Def(Aust) 5679 Document ID: CA38809-
101 Issue: 1.1, Dated 12 May 1999, pg 3.

Software System Safety Handbook

Introduction to the Handbook

* Provides for active (automated) monitoring of the item, or
* Provides for human recognition or mitigation of failure conditions.

Detailed guidance is given on these issues. Justification of the reduction is provided by the
preliminary system safety assessment.

DALs are provided with equivalent numerical failure rates so that quantitative assessments of
risk can be made. However, it is acknowledged that the effectiveness of particular design
strategies cannot always be quantified and that qualitative judgments are often required. In
particular, no attempt is made to interpret the assurance levels of software in probabilistic terms.
Like Def(Aust) 5679, the software assurance levels are used to determine the techniques and
measures to be applied in the development processes.

When the development is sufficiently mature, actual failure rates of hardware components are
estimated and combined by the System Safety Assessment (SSA) to provide an estimate of the
functional failure rates. The assessment should determine if the corresponding DAL has been
met. To achieve its objectives, the SSA suggests Failure Modes and Effects Analysis and Fault
Tree Analysis (FTA), which are described in the appendices of ARP4761.°

2.4.2.2 National Aeronautics and Space Administration

NASA has been developing safety-critical, software-intensive aeronautical and space systems for
many years. To support the required planning of software safety activities on these research and
operational procurements, NASA published NASA Safety Standard (NSS) 1740.13, Interim,
Software Safety Standard, in June 1994. “The purpose of this standard is to provide
requirements to implement a systematic approach to software safety as an integral part of the
overall SSPs. It describes the activities necessary to ensure that safety is designed into software
that is acquired or developed by NASA and that safety is maintained throughout the software life
cycle.” Several DOD and Military Standards including DOD-STD-2167A, Defense System
Software Development, and MIL-STD-882C, System Safety Program Requirements influenced
the development of this NASA standard.

The defined purpose of NSS 1740.13 is as follows:

* To ensure that software does not cause or contribute to a system reaching a hazardous
state,

* That it does not fail to detect or take corrective action if the system reaches a hazardous
state, and

* That it does not fail to mitigate damage if an accident occurs.

2.4.3 Commercial

Unlike the historical relationship established between DOD agencies and their contractors,
commercial companies are not obligated to a specified, quantifiable level of safety risk

> Ibid. page 27-28.

2-11

Software System Safety Handbook

Introduction to the Handbook

management on the products they produce (unless contractually obligated through a subcontract
arrangement with another company or agency). Instead, they are primarily motivated by
economical, ethical, and legal liability factors. For those commercial companies that are
motivated or compelled to pursue the elimination or control of safety risk in software, several
commercial standards are available to provide them guidance. This Handbook will only
reference a few of the most popular. While these commercial standards are readily accessible,
few provide the practitioner with a defined software safety process or the “how-to”” guidance
required to implement the process.

2.4.3.1 Institute of Electrical and Electronic Engineering

The Institute of Electrical and Electronic Engineers (IEEE) published IEEE STD 1228-1994,
IEEE Standard for Software Safety Plans, for the purpose of describing the minimum acceptable
requirements for the content of a software safety plan. This standard contains four clauses.
Clause 1 discusses the application of the standard. Clause 2 lists references to other standards.
Clause 3 provides a set of definitions and acronyms used in the standard. Clause 4 contains the
required content of a software safety plan. An informative annex is included and discusses
software safety analyses. IEEE STD 1228-1994 is intended to be “wholly voluntary” and was
written for those who are responsible for defining, planning, implementing, or supporting
software safety plans. This standard closely follows the methodology of MIL-STD-882B,
Change Notice 1.

2.4.3.2 Electronic Industries Association

The Electronic Industries Association (EIA), G-48 System Safety Committee published the
Safety Engineering Bulletin No. 6B, System Safety Engineering In Software Development, in
1990. The G-48 System Safety Committee has as its interest, the procedures, methodology, and
development of criteria for the application of system safety engineering to systems, subsystems,
and equipment. The purpose of the document is “...to provide guidelines on how a system safety
analysis and evaluation program should be conducted for systems which include computer-
controlled or -monitored functions. It addresses the problems and concerns associated with such
a program, the processes to be followed, the tasks which must be performed, and some methods
which can be used to effectively perform those tasks.”

2.4.3.3 International Electrotechnical Commission

The International Electrotechnical Commission (IEC) has submitted a draft International
Standard (IEC-61508) December 1997, which is primarily concerned with safety-related control
systems incorporating Electrical/Electronic/Programmable Electronic Systems (E/E/PES). It also
provides a framework which is applicable to safety-related systems irrespective of the technology
on which those systems are based (e.g., mechanical, hydraulic, or pneumatic). Although some
parts of the standard are in draft form, it is expected to be approved for use in 1999. “The draft
International Standard has two concepts which are fundamental to its application - namely, a
Safety Life Cycle and SIL. The Overall Safety Life Cycle is introduced in Part 1 and forms the

Software System Safety Handbook

Introduction to the Handbook

central framework which links together most of the concepts in this draft International
Standard.”®

This draft International Standard (IEC-61508) consists of seven parts:
Part 1: General Requirements
Part 2: Requirements for E/E/PES
Part 3: Software Requirements
Part 4: Definitions
Part 5: Guidelines on the Application of Part 1
Part 6: Guidelines on the Application of Part 2 and Part 3
Part 7: Bibliography of Techniques

The draft standard addresses all relevant safety life cycle phases when E/E/PES are used to
perform safety functions. It has been developed with a rapidly developing technology in mind.
The framework in this standard is considered to be sufficiently robust and comprehensive to cater
to future developments.

2.5 International Standards

2.5.1 Australian Defense Standard DEF(AUST) 5679

DEF AUST 5679, published by the Australian Department of Defense in March 1999, is a
standard for the procurement of safety-critical systems with an emphasis on computer based
systems. It focuses on safety management and the phased production of safety assurance
throughout the system development lifecycle, with emphasis on software and software-like
processes. A safety case provides auditable evidence of the safety assurance argument.’

“Software risk and integrity assessment is based on the concept of development integrity levels.
Probabilistic interpretations of risk are explicitly excluded because of the scope for error or
corruption in the quantitative analysis process, and because it is currently impossible to interpret
or assess low targets of failure rates for software or complex designs.

For each potential accident identified by the PHA, a severity category (catastrophic, fatal, severe,
and minor) is allocated, based on the level of injury incurred. Sequences of events that could
lead to each accident are identified, and assigned a probability where estimation is possible.

One of seven Levels of Trust (LOT) is allocated to each system safety requirement, depending on
the severity category of the accidents that may result from the corresponding system hazard. The
LOT may be reduced if each accident sequence can be shown to be sufficiently improbable.

S1EC 1508-1, Ed. 1, (DRAFT), Functional Safety; Safety Related Systems, June 1995
7 International Standards Survey and Comparison to DEF(AUST) 5679 Document ID: CA38809-
101 Issue: 1.1, Dated 12 May 1999, pg 3

Software System Safety Handbook

Introduction to the Handbook

Each LOT defines the desired level of confidence that the corresponding system safety
requirement will be met.

Next, one of seven SILs is assigned to each Component Safety Requirement (CSR), indicating
the level of rigor required meeting the CSR. By default, the SIL level of the CSR is the same as
the LOT of the system safety requirement corresponding to the CSR. However, the default SIL
may be reduced by up to two levels by implementing fault-tolerant measures in the design to
reduce the likelihood of the corresponding hazard. As the standard prohibits allocation of
probabilities to hazards, this is based on a qualitative argument.”

2.5.2 United Kingdom Defense Standard 00-55 & 00-54

“United Kingdom (UK) DEF STAN 00-55 describes requirements and guidelines for procedures and
technical practices in the development of safety-related software. The standard applies to all phases of
the procurement lifecycle. Interim UK DEF STAN 00-54 describes requirements for the procurement
of safety-related electronic hardware, with particular emphasis on the procedures required in various

phases of the procurement lifecycle. Both standards are designed to be used in conjunction with DEF
STAN 00-56.”"

“DEF STANs 00-55 and 00-54 require risk assessment to be conducted in accordance with DEF
STAN 00-56. DEF STAN 00-55 explicitly mentions that software diversity may, if justified, reduce
the required SIL of the application being developed.”'

2.5.3 United Kingdom Defense Standard 00-56

“UK DEF STAN 00-56 provides requirements and guidelines for the development of all defense
systems. The standard applies to all systems engineering phases of the project lifecycle and all
systems, not just computer-based ones.”"'

“In DEF STAN 00-56, accidents are classified as belonging to one of four severity categories and one
of six probability categories. The correspondence between probability categories and actual
probabilities must be stated and approved by the Independent Safety Auditor. Using these
classifications, a risk class is assigned to each accident using a matrix approved by the Independent
Safety Auditor before hazard analysis activities begin.

For systematic (as opposed to random) failures, the SIL (or actual data if available) determines the
minimum failure rate that may be claimed of the function developed according to the SIL; such failure
rates must be approved by the Independent Safety Auditor (ISA). Accidents in the highest risk class
(A) are regarded as unacceptable, while probability targets are set for accidents in the next two risk
classes (B and C). Accidents in the lowest risk class are regarded as tolerable. Accident probability
targets are regarded as having a systematic and a random component. The consideration of accident

¥ International Standards Survey and Comparison to Def(Aust) 5679 Document ID:
CA38809-101 Issue: 1.1, Dated 12 May 1999, pg 26-27.

? Ibid., pg 3.

' Ibid., Page 27

"' Ibid., Page 3.

Software System Safety Handbook

Introduction to the Handbook

probability targets and accident sequences determines the hazard probability targets with systematic
and random components. These hazard probability targets must be approved by the Independent
Safety Auditor.”

DEF STAN 00-56 recommends conducting a “Safety Compliance Assessment using techniques such
as FTA. If the hazard probability target cannot be met for risk class C, then risk reduction techniques
such as redesign, safety or warning features, or special operator procedures must be introduced. If risk
reduction is impracticable, then risk class B may be used with the approval of the Project Safety
Committee.”'?

2.6 Handbook Overview

2.6.1 Historical Background

The introduction of software-controlled, safety-critical systems has caused considerable
ramifications in the managerial, technical, safety, economic, and scheduling risks of both
hardware and software system developments. Although this risk is discussed extensively in
Section 3, the primary focus of this Handbook is documented in Section 4. It includes the
identification; documentation (to include evidence through analyses); and elimination, or control,
of the safety risk associated with software in the design, requirements, development, test,
operation, and support of the “system.”

A software design flaw or run-time error within safety-critical functions of a system introduces
the potential of a hazardous condition that could result in death, personal injury, loss of the
system, or environmental damage. Appendix F provides abstracts of numerous examples of
software-influenced accidents and failures. The incident examples in Appendix F include the
following:

F.1 - Therac Radiation Therapy Machine Fatalities

F.2 - Missile Launch Timing Error Causes Hang-Fire

F.3 - Reused Software Causes Flight Controls Shut Down
F.4 - Flight Controls Fail at Supersonic Transition

F.5 - Incorrect Missile Firing Due to Invalid Setup Sequence

F.6 - Operator Choice of Weapon Release Over-Ridden by Software Control

2.6.2 Problem Identification

Since the introduction of digital controls, the engineering community has wrestled (along with
their research brethren) with processes, methods, techniques, and tools for the sole purpose of
reducing the safety risk of software-controlled operations. Each engineering discipline viewed

'2 International Standards Survey and Comparison to DEF(AUST) 5679 Document ID:
CA38809-101 Issue: 1.1, Dated 12 May 1999, pg 27.

Software System Safety Handbook

Introduction to the Handbook

the problem from a vantage point and perspective from within the confines of their respective
area of expertise. In many instances, this view was analogous to the view seen when looking
down a tunnel. The responsibilities of, and the interfaces with, other management and
engineering functions were often distorted due to individual or organizational biases.

Part of the problem is that SSS is still a relatively new discipline with methodologies, techniques,
and processes that are still being researched and evaluated in terms of logic and practicality for
software development activities. As with any new discipline, the problem must be adequately
defined prior to the application of recommended practices.

2.6.2.1 Within System Safety

From the perspective of most of the system safety community, digital control of safety-critical
functions introduced a new and unwanted level of uncertainty to a historically sound hazard
analysis methodology for hardware. Many within system safety were unsure of how to integrate
software into the system safety process, techniques, and methods that were currently being used.
System safety managers and engineers, educated in the 1950s, 60s, and 70s, had relatively no
computer-, or software-related education or experience. This compounded their reluctance to, or
in many cases their desire or ability to, even address the problem.

In the late 1970s and early 1980s, bold individuals within the safety, software, and research
(academia) communities took their first steps in identifying and addressing the safety risks
associated with software. Although these individuals may not have been in total lock step and
agreement, they did, in fact, lay the necessary foundation for where we are today. It was during
this period that MIL-STD-882B was developed and published. This was the first military
standard to require that the developing contractor perform SSS engineering and management
activities and tasks. However, due to the distinct lack of cooperation or communication between
the system safety and software engineering disciplines in defining a workable process for
identifying and controlling software-related hazards in developing systems, the majority of
system safety professionals waited for academia, or the software engineering community to
develop a “silver bullet” analysis methodology or tool. It was their hope that such an analytical
technique or verification tool could be applied to finished software code to identify any fault
paths to hazard conditions which could then be quickly corrected prior to delivery. This concept
did not include the identification of system hazard and failure modes caused (or influenced) by
software inputs, or the identification of safety-specific requirements to mitigate these hazards and
failure modes. Note that there is yet no “silver bullet,” and there will probably never be one.
Even if a “silver bullet” existed, it would be used too late in the system development life cycle to
influence design.

To further obscure the issue, the safety community within DOD finally recognized that
contractors developing complex hardware and software systems must perform “software safety
tasks.” As a result contracts from that point forward included tasks that included software in the
system safety process. The contractor was now forced to propose, bid, and perform software
safety tasks with relatively little guidance. Those with software safety tasks on contract were in a
desperate search for any tool, technique, or method that would assist them in meeting their
contractual requirements. This was demonstrated by a sample population survey conducted in

Software System Safety Handbook

Introduction to the Handbook

1988 involving software and safety engineers and managers'>. When these professionals were
asked to identify the tools and techniques that they used to perform contractual obligations
pertaining to software safety, they provided answers that were wide and varied across the
analytical spectrum. Of 148 surveyed, 55 provided responses. These answers are provided in
Table 2-1. It is interesting to note that of all respondents to the survey, only five percent felt that
they had accomplished anything meaningful in terms of reducing the safety risk of the software
analyzed.

Table 2-1: Survey Response

/ Software Hazard Analysis Tools

No. Tool/Technique No. Tool /Technique
8 Fault Tree Analysis 1 Hierarchy Tool
4 Software PrelimHazard Analysis 1 Compare & Certification Tool
3 Traceability Analysis 1 System Cross Check Matrices
3 Failure Modes & Effects Analysis 1 Top-Down Review of Code
2 Requirements Modeling/Analysis 1 Software Matrices
2 Source Code Analysis 1 Thread Analysis
2 Test Coverage Analysis 1 Petri-Net Analysis
2 Cross Reference Tools 1 Sofware Hazard List
2 Code/Module Walkthrough 1 BIT/FIT Plan
2 Sneak Circuit Analysis 1 Nuclear Safety Cross-Check Anal.
2 Emulation 1 Mathematical Proof
2 SubSystem Hazard Analysis 1 Software Fault Hazard Analysis
1 Failure Mode Analysis 1 MIL-STD 882B, Series 300 Tasks
1 Prototyping 1 Topological Network Trees
1 Design and Code Inspections 1 Critical Function Flows
1 Checklist of Common SW Errors 1 Black Magic
1 Data Flow Techniques

NOTE: No. = Cumulative total from those responding to the 1988 Survey

The information provided in Table 2-1 demonstrated that the lack of any standardized approach
for the accomplishment of software safety tasks that were levied contractually. It also appeared
as if the safety engineer either tried to accomplish the required tasks using a standard system
safety approach, or borrowed the most logical tool available from the software development
group. In either case, they remained unconvinced of their efforts’ utility in reducing the safety
risk of the software performing in their system.

2.6.2.2 Within Software Development

Historically, the software development and engineering community made about as much progress
addressing the software safety issue as did system safety. Although most software development
managers recognized the safety risk potential that the software posed within their systems, few
possessed the credible means or methods for both minimizing the risk potential and verifying that
safety specification requirements had been achieved in the design. Most failed to include system
safety engineering in software design and development activities, and many did not recognize
that this interface was either needed or required.

13 Mattern, Steven F., Software System Safety, Masters Thesis, Department of Computer
Resource Management, Webster University, December 1988

Software System Safety Handbook

Introduction to the Handbook

A problem, which still exists today, is that most educational institutions do not teach students in
computer science and software engineering that there is a required interface with safety
engineering when software is integrated into a potentially hazardous system. Although the
software engineer may implement a combination of fault avoidance, fault removal, and/or fault
tolerance techniques in the design, code, or test of software, they usually fail to tie the fault or
error potential to a specific system hazard or failure mode. While these efforts most likely
increase the overall reliability of the software, many fail to verify that the safety requirements of
the system have been implemented to an acceptable level.

It is essential that the software development community understand the needed interface with
system safety and that system safety understands their essential interface with software
development.

2.6.3 Management Responsibilities

The ultimate responsibility for the development of a “safe system” rests with program
management. The commitment of qualified people and an adequate budget and schedule for a
software development program must begin with the program director or PM. Top management
must be a strong voice of safety advocacy and must communicate this personal commitment to
each level of program and technical management. The PM must be committed to support the
integrated safety process within systems engineering and software engineering in the design,
development, test, and operation of the system software. Figure 2-1 graphically portrays the
managerial element for the integrated team.

Program
Management
e Wi EER S
Software Systems
Engineering Engineering

l

Safety
Engineering
HW/ SW/HF

Lo y

Figure 2-1: Management Commitment to the Integrated Safety Process

2.6.4 Introduction to the “Systems” Approach

System safety engineering has historically demonstrated the benefits of a “systems” approach to
safety risk analysis and mitigation. When a hazard analysis is conducted on a hardware
subsystem as a separate entity, it will produce a set of unique hazards applicable only to that
subsystem. However, when that same subsystem is analyzed in the context of its physical,

Software System Safety Handbook

Introduction to the Handbook

functional, and zonal interfaces with the rest of the “system components,” the analysis will likely
produce numerous other hazards which were not discovered by the original analysis. Conversely,
the results of a system analysis may demonstrate that hazards identified in the subsystem analysis
were either reduced or eliminated by other components of the system. Regardless, the
identification of critical subsystem interfaces (such as software) with their associated hazards is a
vital aspect of safety risk minimization for the total system.

When analyzing software that performs, and/or controls, safety-critical functions within a system,
a “systems approach” is also required. The success of a software safety program is predicated on
it. Today’s software is a very critical component of the safety risk potential of systems being
developed and fielded. Not only are the internal interfaces of the system important to safety, but
so are the external interfaces.

Figure 2-2 depicts specific software internal interfaces within the “system” block (within the
ovals) and also external software interfaces to the system. Each identified software interface may
possess safety risk potential to the operators, maintainers, environment, or the system itself. The
acquisition and development process must consider these interfaces during the design of both the
hardware and software systems. To accomplish this, the hardware and software development life
cycles must be fully understood and integrated by the design team.

Non-Embedded Computer-Based System

System Software

Test Program Sets
Data Reduction

Crew Training
Simulator

Logistics Support
Maintenance Trainer
Test Equipment
Program Management
Mission Planning
Scenario Analysis
Battle Management
Engineering

Software Development

Procedures

Hardware

Documentation

oUTPUT

0
%

Software

Database

INPUT TO

SYSTEM

Figure 2-2: Example of Internal System Interfaces

2.6.4.1 The Hardware Development Life Cycle

The typical hardware development life cycle has been in existence for many years. It is a proven
acquisition model which has produced, in most instances, the desired engineering results in the
design, development, manufacturing, fabrication, and test activities. It consists of five phases.
These are identified as the concept exploration and definition, demonstration and validation,
engineering and manufacturing development, production and deployment, and operations and
support phases. Each phase of the life cycle ends, and the next phase begins, with a milestone

Software System Safety Handbook

Introduction to the Handbook

decision point (0, I, II, III, and IV). An assessment of the system design and program status is
made at each milestone decision point, and plans are made or reviewed for subsequent phases of
the life cycle. Specific activities conducted for each milestone decision are covered in numerous
system acquisition management courses and documents. Therefore, they will not be discussed in
greater detail in the contents of this Handbook.

The purpose of introducing the system life cycle in this Handbook is to familiarize the reader
with a typical life cycle model. The one shown in Figure 2-3 is used in most DOD procurements.
It identifies and establishes defined phases for the development life cycle of a system and can be
overlaid on a proposed timetable to establish a milestone schedule. Detailed information
regarding milestones and phases of a system life cycle can be obtained from Defense Systems
Management College (DSMC) documentation, and systems acquisition management course
documentation of the individual services.

Weapon System Life Cycle
DoDI 5000.2

- Phase O Phase I Phase II Phase IIT\ Phase IV

[
|
|

| Mission Concept Demonstration Engineering and Production & Operations &

\ | Needs Exploration & & Manufactureing D
\ | Analysis Definition Validation Development

-———-—

Figure 2-3: Weapon System Life Cycle

2.6.4.2 The Software Development Life Cycle

The system safety team must be fully aware of the software life cycle being used by the
development activity. In the past several years, numerous life cycle models have been identified,
modified, and used in some capacity on a variety of software development programs. This
Handbook will not enter into a discussion as to the merits and limitations of different life cycle
process models because the software engineering team must make the decision for or against a
model for an individual procurement. The important issue here is for the system safety team to
recognize which model is being used, and how they should correlate and integrate safety
activities with the chosen software development model to achieve the desired outcomes and
safety goals. Several different models will be presented to introduce examples of the various
models to the reader.

Figure 2-4 is a graphical representation of the relationship of the software development life cycle
to the system/hardware development life cycle. Note that software life cycle graphic shown in
Figure 2-4 portrays the DOD-STD-2167A software life cycle, which was replaced with
MIL-STD-498, dated December 5, 1994. The minor changes made to the software life cycle by
MIL-STD-498 are also shown. Notice also, that the model is representative of the “Waterfall,”
or “Grand Design” life cycle. While this model is still being used on numerous procurements,
other models are more representative of the current software development schemes currently
being followed, such as the “Spiral” and “Modified V” software development life cycles.

It is important to recognize that the software development life cycle does not correlate exactly
with the hardware (system) development life cycle. It “lags” behind the hardware development

2-20

Software System Safety Handbook

Introduction to the Handbook

at the beginning but finishes before the hardware development is completed. It is also important
to realize that specific design reviews for hardware usually lag behind those required for
software. The implications will be discussed in Section 4 of this Handbook.

[MS 0 MS1 MS 2 MS3 MS 4 \
V= v DODI 5000.2R v A 4 L
Phase 0 Phase | Phase I1 N\ Phase 111 Phase IV
Exlnclzl;:teig Itl & Demor{l;tratlon Engineering and Manufacturing Production &| Operations &
Definition Validation Development g Deployment Support
Inter- Maintenance
System Hardware Prototype .. E .)
Requirements & Design Design [Manufacturing Operability \Y Manufacturing .PIP5 .
MIL-STD- Test A Technical Reviews
498 Software Requirements rp | DD [Code & CSU Syst’erp L | Copy Media Obsolescence
Analysis CSU | CSCI| Integration & Distributionl Recovery
Test | Test Test System Upgrades

Figure 2-4: Relationship of Software to the Hardware Development Life Cycle

2.6.4.2.1 Grand Design, Waterfall Life Cycle Model#

The Waterfall software acquisition and development life cycle model is the oldest in terms of use
by software developers. This strategy usually uses DOD-STD-2167A terminology and “...was
conceived during the early 1970s as a remedy to the code-and-fix method of software
development.” Grand Design places emphasis on up-front documentation during early
development phases, but does not support modern development practices such as prototyping and
automatic code generation. “With each activity as a prerequisite for succeeding activities, this
strategy is a risky choice for unprecedented systems because it inhibits flexibility.” Another
limitation to the model is that after a single pass through the model, the system is complete.
Therefore, many integration problems are identified much too late in the development process to
be corrected without significant cost and schedule impacts. In terms of software safety, interface
issues must be identified and rectified as early as possible in the development life cycle to be
adequately corrected and verified. Figure 2-5 is a representation of the Grand Design, or
Waterfall, life cycle model. The Waterfall model is not recommended for large, software-
intensive, systems. This is due to the limitations stated above and the inability to effectively
manage program risks, including safety risk during the software development process. The
Grand Design does, however, provide a structured and well-disciplined method for software
development.

' The following descriptions of the software acquisition life cycle models are either quoted or
paraphrased from the Guidelines for Successful Acquisition and Management of Software
Intensive Systems, Software Technology Support Center (STSC), September 1994, unless
otherwise noted.

2-21

Software System Safety Handbook

Introduction to the Handbook

/SPECIFICATION

DEVELOPMENT

REQUIREMENTS
DEFINITION

__

DESIGN

e

| Developmental I

A

I Qualification I

TESTING

INDEPENDENT

VALIDATION &
VERFICATION ‘

OPERATION

Figure 2-5: Grand Design Waterfall Software Acquisition Life Cycle Model

User Support

2.6.4.2.2 Modified V Life Cycle Model

The Modified V software acquisition life cycle model is another example of a defined method for
software development. It is depicted in Figure 2-6. This model is heavily weighted in the ability
to design, code, prototype, and test in increments of design maturity. “The left side of the figure
identifies the specification, design, and coding activities for developing software. It also
indicates when the test specification and test design activities can start. For example, the
system/acceptance tests can be specified and designed as soon as software requirements are
known. The integration tests can be specified and designed as soon as the software design
structures are known. And, the unit tests can be specified and designed as soon as the code units
are prepared.”’ The right side of the figure identifies when the evaluation activities occur that
are involved with the execution and testing of the code at its various stages of evolution.

15 Software Test Technologies Report, August 1994, STSC, Hill Air Force Base, UT 84056

2-22

Software System Safety Handbook

Introduction to the Handbook

EXECUTE
ACCEPTANCE
TESTS

SPECIFY EXECUTE
REQUIREMENTS SYSTEM TESTS
Specify /Design Code |
System Integration Tests
EXECUTE
DESIGN INTEGRATION

TESTS

Specify /Design Code
System Integration Tests

EXECUTE
UNIT TESTS

CODE

SPECIFY/DESIGN
\ UNIT TESTS /

Figure 2-6: Modified V Software Acquisition Life Cycle Model

2.6.4.2.3 Spiral Life cycle Model

The Spiral acquisition life cycle model provides a risk-reduction approach to the software
development process. In the Spiral model, Figure 2-7, the radial distance is a measure of effort
expended, while the angular distance represents progress made. It combines features of the
Waterfall and the incremental prototype approaches to software development. “Spiral
development emphasizes evaluation of alternatives and risk assessment. These are addressed
more thoroughly than with other strategies. A review at the end of each phase ensures
commitment to the next phase or identifies the need to rework a phase if necessary. The
advantages of Spiral development are its emphasis on procedures, such as risk analysis, and its
adaptability to different development approaches. If Spiral development is employed with
demonstrations and Baseline/Configuration Management (CM), you can get continuous user buy-
in and a disciplined process.”'®

16 Guidelines for Successful Acquisition and Management of Software Intensive Systems, STSC,
September 1994.

2-23

Software System Safety Handbook

Introduction to the Handbook

Determine Objectives,
Alternatives, and
Constraints

Evaluate Alternatives,
Identify and Resolve
Risks

Risk Analysis

Limits

Prototype
Product #1
Review

Design Rqmts System
Review Review Review

Concept

Customer -
Evaluation
Development
Plan

Integration &
est Plan

Acceptance
Plan Next

Phase

Develop Next Level
Product

Figure 2-7: Spiral Software Acquisition Life Cycle Model

Within the DOD, an Ada Spiral Model Environment is being considered for some procurements
where the Ada language is being used. It provides an environment that combines a model and a
tool environment, such that it offers the ability to have continual touch-and-feel of the software
product (as opposed to paper reports and descriptions). This model represents a “demonstration-
based” process that employs a top-down incremental approach that results in an early and
continuous design and implementation validation. Advantages of this approach are that it is built
from the top down, it supports partial implementation; the structure is automated, real and
evolved; and that each level of development can be demonstrated. Each build and subsequent
demonstration validates the process and the structure to the previous build.

2.6.4.3 The Integration of Hardware and Software Life Cycles

The life cycle process of system development was instituted so managers would not be forced to
make snap decisions. A structured life cycle, complete with controls, audits, reviews, and key
decision points, provides a basis for sound decision making based on knowledge, experience, and
training. It is a logical flow of events representing an orderly progression from a “user need” to
finalize activation, deployment, and support.

The “systems approach” to software safety engineering must support a structured, well-
disciplined, and adequately documented system acquisition life cycle model that incorporates
both the system development model and the software development model. Program plans (as
described in Appendix C, Section C.7) must describe in detail how each engineering discipline
will interface and perform within the development life cycle. It is recommended that you refer
back to Figure 2-4 and review the integration of the hardware and software development life

2-24

Software System Safety Handbook

Introduction to the Handbook

cycle models. Graphical representations of the life cycle model of choice for a given
development activity must be provided during the planning processes. This activity will aid in
the planning and implementation processes of software safety engineering. It will allow for the
integration of safety-related requirements and guidelines into the design and code phases of
software development. It will also assist in the timely identification of safety-specific test and
verification requirements to prove that original design requirements have been implemented as
they were intended. It further allows for the incorporation of safety inputs to the prototyping
activities in order to demonstrate safety concepts.

2.6.5 A “Team” Solution

The system safety engineer (SSE) cannot reduce the safety risk of systems software by himself.
The software safety process must be an integrated team effort between engineering disciplines.
Previously depicted in Figure 2-1, software, safety, and systems engineering are the pivotal
players of the team. The management block is analogous to a “conductor” that provides the
necessary motivation, direction, support, and resources for the team to perform as a well-
orchestrated unit.

It is the intent of the authors of this Handbook to demonstrate that neither the software
developers, nor safety engineers, can accomplish the necessary tasks to the level of detail
required by themselves. This Handbook will focus on the required tasks of the safety engineer,
the software engineer, the software safety engineer, the system and design engineers, and the
interfaces between each. Regardless of who executes the individual software safety tasks, each
engineer must be intimately aware of the duties, responsibilities, and tasks required from each
functional discipline. Each must also understand the time (in terms of life cycle schedule), place
(in terms of required audits, meetings, reviews, etc.), and functional analysis tasks that must be
produced and delivered at any point in the development process. Section 4 will expand on the
team approach in detail as the planning, process tasks, products, and risk assessment tasks are
presented. Figure 2-8 uses a puzzle analogy to demonstrate that the software safety approach
must establish integration between functions and among engineers. Any piece of the puzzle that
is missing from the picture will propagate into an unfinished or incomplete software safety work.

The elements contributing to a credible and successful software safety engineering program will
include the following:

* A defined and established system safety engineering process,

* A structured and disciplined software development process,

* An established hardware and software systems engineering process,
* An established hardware/software configuration control process, and

* Anintegrated SSS Team responsible for the identification, implementation, and
verification of safety-specific requirements in the design and code of the software.

2-25

Software System Safety Handbook

Introduction to the Handbook

~

AN ESTABLISHED
SYSTEM SAFETY
ENGINEERING
PROCESS

AN ESTABLISHED
SOFTWARE
DEVELOPMENT
PROCESS

THE
SOFTWARE
SAFETY
ENGINEERING
TEAM

AN
AN
ESTABLISHED
HARDWARE AND ESTABLISHED
SOFTWARE gs‘{g?r:?vx‘g
CONFIGURATION
ENGINEERING
CONTROL
PROCESS

\ PROCESS /

Figure 2-8: Integration of Engineering Personnel and Processes

2.7 Handbook Organization

This Handbook is organized to provide the capability to review or extract subject information
important to the reader. For example, the Executive Overview may be the only portion required
by the executive officer, program director, or PM to determine whether a software safety program
is required for their program. It is to be hoped that the executive section will provide the
necessary motivation, authority, and impetus for establishing a software safety program
consistent with the nature of their development. Engineering and software managers, on the
other hand, will need to read further into the document to obtain the managerial and technical
process steps required for a software-intensive, safety-critical system development program.
Safety program managers, safety engineers, software engineers, systems engineers, and software
safety engineers will need to read even further into the document to gather the information
necessary to develop, establish, implement, and manage an effective SWSSP. This includes the
“how-to” details for conducting various analyses required to ensure that the system software will
function within the system context to an acceptable level of safety risk. Figure 2-9 graphically
depicts the layout of the four sections of the Handbook, the appendices, and a brief description of
the contents of each.

As shown in Figure 2-9, Section 1 provides an executive overview of the handbook for the
purpose of providing executive management a simplified overview of the subject of software
safety. It also communicates the requirement and authority for a SSS program; motivation and
authority for the requirement; and their roles and responsibilities to the customer, the program,
and to the design and development engineering disciplines. Section 2 provides an in-depth
description of the purpose and scope of the Handbook, and the authority for the establishment of
a SwSSP on DOD procurements and acquisition research and development activities. It also
provides a description of the layout of the Handbook as it applies to the acquisition life cycle of a
system development. Section 3 provides an introduction to system safety engineering and

2-26

Software System Safety Handbook

Introduction to the Handbook

management for those readers not familiar with the MIL-STD-882 methods and the approach for
the establishment and implementation of a SSP. It also provides an introduction to risk
management and how safety risk is an integral part of the risk management function. Section 3
also provides an introduction to, and an overview of, the system acquisition, systems
engineering, and software development process and guidance for the effective integration of
these efforts in comprehensive systems safety process. Section 4 provides the “how-to” of a
baseline software safety program. The authors recognize that not all acquisitions and
procurements are similar, nor do they possess the same problems, assumptions, and limitations in
terms of technology, resources, development life cycles, and personalities. This section provides
the basis for careful planning and forethought required in establishing, tailoring, and
implementing a SwWSSP guidance for the practitioner, and not as a mindless “checklist” process.

Software System Safety
Handbook Layout

[—— &

¢ Definitions, References, Supplemental Information,

Generic Guidelines, and Lessons Learned
Appendices

—

Software ¢ Planning, Task Implementation, Risk
. Safety Assessment and Acceptance, Configuration
el (it ot Management, and Reusable Software.

—

Introducti i
ntr: ;:s]:on * Overview of System Safety

Management| and Risk Management

and System
Safet

¢ Purpose, Scope, Authority,
Introduction Overview, and Handbook

to the Organization
Handbook

—

2.0

Executive
Overview

* Motivation and Direction
for the Program Director
and Program Manager

Handbook
Sections

[1.0

Figure 2-9: Handbook Layout

Section 4, Software Safety Engineering, is formatted logically (see Figure 2-10) to provide the
reader with the steps required for planning, task implementation, and risk assessment and

2-27

Software System Safety Handbook

Introduction to the Handbook

acceptance for a SSS program. Appendix C.9 through C-11 provides information regarding the
management of configuration changes and issues pertaining to software reuse and COTS
software packages.

Introduction
4.1

Software System Safety Handbook
Section-4 Format

Software Safety Engineering \
PROCESSES

Software Safety
Planning
Management
4.2

Software Safety
Task
Implementation

4.3

Software Safety
Testing & Risk
Assc—zssmc—znt44

= Managing Change
Appendix C.9

Reusable Software <—

Appendix D Safety Assessment
Report

4.5

COTS Software

il

\ Appendix D j

Figure 2-10: Section 4 Format

2.7.1 Planning and Management

Section 4 begins with the planning required to establish a SwSSP. It discusses the program
interfaces, contractual interfaces and obligations, safety resources, and program planning and
plans. This particular section assists and guides the safety manager and engineer in the required
steps of software safety program planning. Although there may be subject areas that are not
required for individual product procurements, each area should be addressed and considered in
the planning process. It is acceptable to determine that a specific activity or deliverable is not
appropriate or necessary for your individual program.

2.7.2 Task Implementation

This is the very heart of the handbook as applied to implementing a credible software safety
program. It establishes a step-by-step baseline of “best practices” for today’s approach in
reducing the safety risk of software performing safety-critical and safety-significant functions
within a system. A caution at this point is to not consider these process steps completely serial in
nature. Although they are presented in a near serial format (for ease of reading and
understanding), there are many activities that will require parallel processing and effort from the
safety manager and engineer. Activities as complicated and as interface-dependent as a software

2-28

Software System Safety Handbook

Introduction to the Handbook

development within a systems acquisition process will seldom have required tasks line up where
one task is complete before the next one begins. This is clearly demonstrated by the
development of a SSS program and milestone schedule (see paragraph 4.3.1)

This section of the Handbook describes the tasks associated with contract and deliverable data
development (including methods for tailoring), safety-critical function identification, preliminary
and detailed hazard analysis, safety-specific requirements identification, implementation, test and
verification, and residual risk analysis and acceptance. It also includes the participation in trade
studies and design alternatives.

2.7.3 Software Risk Assessment and Acceptance

The risk assessment and acceptance portion of Section 4 focuses on the tasks identifying residual
safety risk in the design, test, and operation of the system. It includes the evaluation and
categorization of hazards remaining in the system and their impact to operations, maintenance,
and support functions. It also includes the graduated levels of programmatic sign-off for hazard
and failure mode records of the Subsystem, System, and Operations and Support Hazard
Analyses. This section includes the tasks required to identify the hazards remaining in the
system, assess their safety risk impact with their severity, probability or software control
criticality, and determine the residual safety risk.

2.7.4 Supplementary Appendices

The Handbook’s appendices include acronyms, definition of terms, references, supplemental
system safety information, generic safety requirements and guidelines, and lessons learned
pertaining to the accomplishment of the SSS tasks.

2-29

Software System Safety Handbook

Introduction to Risk Management and System Safety

3. Introduction to Risk Management and System Safety

3.1 Introduction

SSS Team members who are not familiar with system safety should read this section. It should
also be read by anyone who feels a need to become more familiar with the concept of the HRI
and how hazards are rationally assessed, analyzed, correlated, and tracked.

Section 3 will discuss the following:
* Risk and its application to the SWSSP
e Programmatic risks

o Safety risks

3.2 A Discussion of Risk

Everywhere that we turn, we are surrounded by a multitude of risks, some large and some so
minimal that they can easily be overlooked, but all demanding to be recognized (i.e., assessed)
and dealt with (i.e., managed). We view taking risks as foolhardy, irrational, and to be avoided.
Risks imposed on us by others are generally considered to be entirely unacceptable. Everything
that we do involves risk. It is an unavoidable part of our everyday lives.

Realistically, some risk of mishap must be accepted. Systems are hardly ever risk free. A totally
safe aircraft for instance will never fly, as the potential for a crash is still possible if it becomes
airborne. The residual safety risk in the fielded system is the direct result of the accuracy and
comprehensiveness of the SSP. How much risk is accepted or not accepted, is the prerogative of
management on any give acquisition program. That decision is affected by a great deal of input.
As tradeoffs are being considered and the design progresses, it may become evident that some of
the safety parameters are forcing higher program risk. From the PM's perspective, a relaxation of
one or more of the safety requirements may appear to be advantageous when considering the
broader perspective of cost and performance optimization. The PM will frequently make a
decision against the recommendation of his system safety manager. The system safety manager
must recognize such management prerogatives. However, the prudent PM must make the
decision whether to fix the identified problem or formally document acceptance of the added
risk. Of course, responsibility of personnel injury or loss of life changes the picture considerably.
When the PM decides to accept risk, the decision must be coordinated with all affected
organizations and then documented; so that in future years, everyone will know and understand
the elements of the decision and why it was made.

Accepting risk is an action of both risk assessment and risk management. Risk acceptance is not
as simple a matter as it may first appear. Several points must be kept in mind:

* Risk is a fundamental reality.

* Risk management is a process of tradeoffs.

3-1

Software System Safety Handbook

Introduction to Risk Management and System Safety

e Quantifying risk does not ensure safety.
* Risk is a matter of perspective.

Risk Perspectives. When discussing risk, we must distinguish between three different
standpoints, which are as follows:

» Standpoint of an INDIVIDUAL exposed to a hazard.

e Standpoint of SOCIETY. Besides being interested in guaranteeing minimum individual
risk for each of its members, society is concerned about the total risk to the general
public.

* Standpoint of the INSTITUTION RESPONSIBLE FOR THE ACTIVITY. The
institution responsible for an activity can be a private company or a government agency.
From their point of view, it is essential to keep individual risks to employees or other
persons and the collective risk at a minimum. An institution’s concern is also to avoid
catastrophic accidents.

The system safety effort is an optimizing process that varies in scope and scale over the lifetime
of the system. SSP balances are the result of the interplay between system safety and the three
very familiar basic program elements: cost, performance, and schedule. Without an acute
awareness of the system safety balance on the part of both the PM and the system safety
manager, they cannot discuss when, where, and how much they can afford to spend on system
safety. We cannot afford mishaps that will prevent the achievement of the primary mission goal,
nor can we afford systems that cannot perform because of overstated safety goals.

Safety Management’s Risk Review. The SSP examines the interrelationships of all
components of a program and its systems with the objective of bringing mishap risk or risk
reduction into the management review process for automatic consideration in total program
perspective. It involves the preparation and implementation of system safety plans; the
performance of system safety analyses on both system design and operations, and risk
assessments in support of both management and system engineering activities. The system safety
activity provides the manager with a means of identifying what the risk of mishap is, where a
mishap can be expected to occur, and what alternate designs are appropriate. Most important, it
verifies implementation and effectiveness of hazard control. What is generally not recognized in
the system safety community is that there are no safety problems in system design. There are
only engineering and management problems, which if left unresolved, can result in a mishap.
When a mishap occurs, then it is a safety problem. Identification and control of mishap risk is an
engineering and management function. This is particularly true of software safety risk.

3.3 Types of Risk

There are various models describing risks that are listed below. The model in Figure 3-1 follows
the system safety concept of risk reduction.

Total Risk is the sum of identified and unidentified risks.

Software System Safety Handbook

Introduction to Risk Management and System Safety

Identified Risk is that risk which has been determined through various analytical
techniques. The first task of system safety is to make identified risk as large a piece of
the overall pie as practical. The time and costs of analytical efforts, the quality of the
safety program, and the state of technology impact the amount of risk identified.

\

Identified

\
1
|
|
|
|
|
1
I

Unidentified

Residual) 1

\ Total Risk Residual Risk /

Figure 3-1: Types of Risk

Unacceptable Risk is that risk which cannot be tolerated by the managing activity. It is a
subset of identified risk that is either eliminated or controlled.

Residual Risk is the risk left over after system safety efforts have been fully employed.

It is sometimes erroneously thought of as being the same as acceptable risk. Residual risk
is actually the sum of unacceptable risk (uncontrolled), acceptable risk and unidentified
risk. This is the total risk passed on to the user that may contain some unacceptable risk.

Acceptable Risk is the part of identified risk that is allowed to persist without further
engineering or management action. It is accepted by the managing activity. However, it
is the user who is exposed to this risk.

Unidentified Risk is the risk that has not been determined. It is real. It is important, but
it cannot be measured. Some unidentified risk is subsequently determined and measured
when a mishap occurs. Some risk is never known.

3.4 Areas of Program Risk

Within the DOD, risk is defined as a potential occurrence that is detrimental to either plans or
programs. This risk is measured as the combined effect of the likelihood of the occurrence and a
measured or assessed consequence given that occurrence (DSMC 1990). The perceived risk to a
program is usually different between program management, systems engineers, users, and safety.
Because of this, the responsibility of defining program risk is usually assigned to a small group of
individuals from various disciplines that can evaluate the program risks from a broad perspective
of the total program concepts and issues to include business, cost, schedule, technical, and
programmatic considerations. Although risk management responsibility is assigned to an
individual group, the successful management of a program’s risk is dependent on contributions

Software System Safety Handbook

Introduction to Risk Management and System Safety

and inputs of all individuals involved in the program management and engineering design
functional activities.

In DOD, this risk management group is usually assigned to (or contained within) the systems
engineering group. They are responsible for identifying, evaluating, measuring, and resolving
risk within the program. This includes recognizing and understanding the warning signals that
may indicate that the program, or elements of the program, is off track. This risk management
group must also understand the seriousness of the problems identified and then develop and
implement plans to reduce the risk. A risk management assessment must be made early in the
development life cycle and the risks must continually be reevaluated throughout the development
life cycle. The members of the risk management group and the methods of risk identification and
control should be documented in the program’s Risk Management Plan.

Risk management'’ must consist of three activities:

Risk Planning — This is the process to force organized, purposeful thought to the subject
of eliminating, minimizing, or containing the effects of undesirable consequences.

Risk Assessment — This is the process of examining a situation and identifying the areas
of potential risk. The methods, techniques, or documentation most often used in risk
assessment include the following:

Systems engineering documents
Operational Requirements Document
Operational Concepts Document
Life cycle cost analysis and models
Schedule analysis and models
Baseline cost estimates
Requirements documents

Lessons learned files and databases
Trade studies and analyses

Technical performance measurements and analyses
Work Breakdown Structures (WBS)
Project planning documents

Risk Analysis — This is the process of determining the probability of events and the
potential consequences associated with those events relative to the program. The purpose
of a risk analysis is to discover the cause, effects, and magnitude of the potential risk, and

'7 Selected descriptions and definitions regarding risk management are paraphrased from the
DSMC, Systems Engineering Management Guide, January 1990

34

Software System Safety Handbook

Introduction to Risk Management and System Safety

to develop and examine alternative actions that could reduce or eliminate these risks.
Typical tools or models used in risk analysis include the following:

Schedule Network Model

Life Cycle Cost Model

Quick Reaction Rate/Quantity Cost Impact Model
System Modeling and Optimization

To further the discussion of program risk, short paragraphs are provided to help define schedule,
budget, sociopolitical, and technical risk. Although safety, by definition, is a part of technical
risk, it can impact all areas of programmatic risk as described in subsequent paragraphs. This is
what ties safety risk to technical and programmatic risk.

3.4.1 Schedule Risk

The master systems engineering and software development schedule for a program contains
numerous areas of programmatic risk, such as schedules for new technology development,
funding allocations, test site availability, critical personnel availability and rotation, etc. Each of
these has the potential for delaying the development schedule and can induce unwarranted safety
risk to the program. While these examples are by no means the only source of schedule risk, they
are common to most programs. The risk manager must identify, analyze, and control risks to the
program schedule by incorporating positive measures into the planning, scheduling, and
coordinating activities for the purpose of minimizing their impact to the development program.

To help accomplish these tasks, the systems engineering function maintains the Systems
Engineering Master Schedule (SEMS) and the Systems Engineering Detailed Schedule (SEDS).
Maintaining these schedules helps to guide the interface between the customer and the developer,
provides the cornerstone of the technical status and reporting process, and provides a disciplined
interface between engineering disciplines and their respective system requirements. An example
of the integration, documentation, tracking, and tracing of risk management issues is depicted in
Figure 3-2. Note that the SEMS and SEDS schedules, and the risk management effort are
supported by a risk issue table and risk management database. These tools assist the risk
manager in the identification, tracking, categorization, presentation, and resolution of managerial
and technical risk.

Software developers for DOD customers or agencies are said to have maintained a perfect record
to date. That is, they have never yet delivered a completed (meets all user/program requirements
and specifications) software package on time'®. While this may be arguable, the inference is
worthy of consideration. It implies that schedule risk is an important issue on a software
development program. The schedule can become the driving factor forcing the delivery of
immature and improperly tested critical software product to the customer. The risk manager, in
concert with the safety manager, must ensure that the delivered product does not introduce safety
risk to the user, system, maintainer, or the environment that is considered unacceptable. This is

'8 paraphrased from comments made at the National Workshop on Software Logistics, 1989

Software System Safety Handbook

Introduction to Risk Management and System Safety

accomplished by the implementation of a SWSSP (and safety requirements) early in the software
design process. The end result should produce a schedule risk reduction by decreasing the
potential for re-design and re-code of software possessing safety deficiencies.

SEMS Risk Issue Table

Risk Management Database

r *
&1 /

01 / Risk Title
02 / /y WBS#
Contractor
03 / Risk Rationale
2 Probability of Failure
Consequence of Failure
o] / Risk Factor

02 Risk Closure Plan
/ Risk POC

Risk POC Phone#
3 Lead Technical Manager

Figure 3-2: Systems Engineering, Risk Management Documentation

3.4.2 Budget Risk

Almost hand-in-hand with schedule risk comes budget risk. Although they can be mutually
exclusive, that is seldom the case. The lack of monetary resources is always a potential risk in a
development program. Within the DOD research, acquisition, and development agencies, the
potential for budget cuts or congressionally mandated program reductions always seems to be
lurking around the next corner. Considering this potential, budgetary planning, cost scheduling,
and program funding coordination become paramount to the risk management team. They must
ensure those budgetary plans for current- and out-years are accurate and reasonable, and those
potential limitations or contingencies to funding are identified, analyzed, and incorporated into
the program plans.

In system safety terms, the development of safety-critical software requires significant program
resources, highly skilled engineers, increased training requirements, software development tools,
modeling and simulation, and facilities and testing resources. To ensure that this software meets
functionality, safety, and reliability goals, these activities become “drivers” for both the budget
and schedule of a program. Therefore, the safety manager must ensure that all safety-specific
software development and test functions are prioritized in terms of safety risk potential to the
program and to the operation of software after implementation. The prioritization of safety
hazards and failure modes, requirements, specifications, and test activities attributed to software
help to facilitate and support the tasks performed by the risk management team. It will help them

Software System Safety Handbook

Introduction to Risk Management and System Safety

understand, prioritize, and incorporate the activities necessary to minimize the safety risk
potential for the program.

3.4.3 Sociopolitical Risk

This is a difficult subject to grasp from a risk management perspective. It is predicated more on
public and political perceptions than basic truth and fact. Examples of this type of risk are often
seen during the design, development, test, and fielding of a nuclear weapon system in a
geographical area that has a strong public, and possibly political, resistance. With an example
like this in mind, several programmatic areas become important for discussion. First, program
design, development, and test results have to be predicated on complete, technical fact. This will
preclude any public perception of attempts to hide technical shortfalls or safety risk. Second,
social and political perceptions can generate programmatic risk that must be considered by the
risk managers. This includes the potential for budget cuts, schedule extensions, or program
delays due to funding cuts as a result of public outcry and protest and its influence on politicians.

Safety plays a significant role in influencing the sensitivities of public or political personages
toward a particular program. It must be a primary consideration in assessing risk management
alternatives. If an accident (even a minor accident without injury) should occur during a test, it
could result in program cancellation.

The sociopolitical risk may also change during the life cycle of a system. For example, explosive
handling facilities once located in isolated locations often find residential areas encroaching.
Protective measures adequate for an isolated facility may not be adequate as residents, especially
those not associated with the facility, move closer. While the PM cannot control the later growth
in population, he/she must consider this and other factors during the system development
process.

3.4.4 Technical Risk

Technical risk is where safety risk is most evident in system development and procurement. It is
the risk associated with the implementation of new technologies or new applications of existing
technologies into the system being developed. These include the hardware, software, human
factors interface, and environmental safety issues associated with the design, manufacture,
fabrication, test, and deployment of the system. Technical risk results from poor identification
and incorporation of system performance requirements to meet the intent of the user and system
specifications. The inability to incorporate defined requirements into the design (lack of a
technology base, lack of funds, lack of experience, etc.) increases the technical risk potential.

Systems engineers are usually tasked with activities associated with risk management. This is
due to their assigned responsibility for technical risk within the design engineering function. The
systems engineering function performs specification development, functional analysis,
requirements allocation, trade studies, design optimization and effectiveness analysis, technical
interface compatibility, logistic support analysis, program risk analysis, engineering integration
and control, technical performance measurement, and documentation control.

Software System Safety Handbook

Introduction to Risk Management and System Safety

The primary objective of risk management in terms of software safety is to understand that safety
risk is a part of the technical risk of a program. All program risks must be identified, analyzed,
and either eliminated or controlled. This includes safety risk, and thus, software (safety) risk.

3.5 System Safety Engineering

To understand the concept of system safety as it applies to software development, the user needs
a basic introduction and description of system safety since software is a subset of the SSP
activities. “System safety as we know it today began as a grass roots movement that was
introduced in the 40s, gained momentum during the 50s, became established in the 60s, and
formalized its place in the acquisition process in the 70s. The system safety concept was not the
brain child of one person, but rather a call from the engineering and safety community to design
and build safer equipment by applying lessons learned from our accident investigations.”" It
grew out of “conditions arising after WW II when its “parent” disciplines - systems engineering
and systems analysis were developed to cope with new and complex engineering problems.”*’
System safety evolved alongside and in conjunction with, systems engineering and systems
analysis. Systems engineering considers “the overall process of creating a complex human -
machine system and systems analysis providing (1) the data for the decision - making aspects of
that process and (2) an organized way to select among the latest alternative designs.”' In the
1950s intense political pressure focused on safety following several catastrophic mishaps. These
included incidents where Atlas and Titan intercontinental ballistic missiles exploded in their silos
during operational testing. Investigation of the cause of these accidents revealed that a large
percentage of the causal factors could be traced to deficiencies in design, operation, and
management that could have, and should have, been detected and corrected prior to placing the
system in service. This recognition led to the development of system safety approaches to
identify and control hazards in the design of the system in order to minimize the likelihood
and/or severity of first-time accidents.

As system safety analytical techniques and managerial methods evolved, they have been
documented in various government and commercial standards. The first system safety
specification was a document created by the Air Force in 1966, MIL-S-38130A. In June 1969,
MIL-STD-882 replaced this standard and a SSP became mandatory for all DOD-procured
products and systems. Many of the later system safety requirements and standards in industry
and other government agencies were developed based on MIL-STD-882, and remain so today.
As both DOD and NASA began to use computers/software increasingly to perform critical
system functions, concern about the safety aspects of these components began to emerge. The
DOD initiated efforts to integrate software into SSPs in the 1980s with the development of an
extensive set of software safety tasks (300 series tasks) for incorporation into MIL-STD-882B
(Notice 1).

19 Air Force System Safety Handbook, August 1992

291 eveson, Nancy G., Safeware, System Safety and Computers, 1995, Addison Wesley, page
129

! 1bid, page 143

3-8

Software System Safety Handbook

Introduction to Risk Management and System Safety

The identification of separate software safety tasks in MIL-STD-882B focused engineering
attention on the hazard risks associated with the software components of a system and its critical
effect on safety. However, the engineering community perceived them as “segregated” tasks to
the overall system safety process as system safety engineers tried to push the responsibility for
performing these tasks onto software engineers. Since software engineers had little
understanding of the “system safety”” process and of the overall system safety functional
requirements, this was an unworkable process for dealing with SSRs. Therefore, the separate
software safety tasks were not included in MIL-STD-882C as separate tasks, but were integrated
into the overall system-related safety tasks. In addition, software engineers were given a clear
responsibility and a defined role in the SSS process in MIL-STD-498.

MIL-STD-882 defines system safety as:

“The application of engineering and management principles, criteria, and techniques to optimize
all aspects of safety within the constraints of operational effectiveness, time, and cost throughout
all phases of the system life cycle.”

SSP objectives can be further defined as follows:

a. Safety, consistent with mission requirements, is designed into the system in a timely,
cost-effective manner.

b. Hazards associated with systems, subsystems, or equipment are identified, tracked,
evaluated, and eliminated; or their associated risk is reduced to a level acceptable to the
Managing Authority (MA) by evidence analysis throughout the entire life cycle of a
system.

c. Historical safety data, including lessons learned from other systems, are considered and
used.

d. Minimum risk consistent with user needs is sought in accepting and using new design
technology, materials, production, tests, and techniques. Operational procedures must
also be considered.

e. Actions taken to eliminate hazards or reduce risk to a level acceptable to the MA are
documented.

f. Retrofit actions required to improve safety are minimized through the timely inclusion
of safety design features during research, technology development for, and acquisition
of a system.

g. Changes in design, configuration, or mission requirements are accomplished in a
manner that maintains a risk level acceptable to the MA.

h. Consideration is given early in the life cycle to safety and ease of disposal [including
Explosive Ordnance Disposal (EOD)], and demilitarization of any hazardous materials
associated with the system. Actions should be taken to minimize the use of hazardous
materials and, therefore, minimize the risks and life cycle costs associated with their
use.

Software System Safety Handbook

Introduction to Risk Management and System Safety

Significant safety data are documented as “lessons learned” and are submitted to data
banks or as proposed changes to applicable design handbooks and specifications.

Safety is maintained and assured after the incorporation and verification of Engineering
Change Proposals (ECP) and other system-related changes.

With these definitions and objectives in mind, the system safety manager/engineer is the primary
individual(s) responsible for the identification, tracking, elimination, and/or control of hazards or
failure modes that exist in the design, development, test, and production of both hardware and
software. This includes their interfaces with the user, maintainer, and the operational
environment. System safety engineering is a proven and credible function supporting the design
and systems engineering process. The steps in the process for managing, planning, analyzing,
and coordinating system safety requirements are well established and when implemented,
successfully meet the above stated objectives.

These general SSP requirements are as follows:

a.

Eliminate identified hazards or reduce associated risk through design, including
material selection or substitution.

Isolate hazardous substances, components, and operations from other activities, areas,
personnel, and incompatible materials.

Locate equipment so that access during operations, servicing, maintenance, repair, or
adjustment minimizes personnel exposure to hazards.

Minimize risk resulting from excessive environmental conditions (e.g., temperature,
pressure, noise, toxicity, acceleration, and vibration).

Design to minimize risk created by human error in the operation and support of the
system.

Consider alternate approaches to minimize risk from hazards that cannot be eliminated.
Such approaches include interlocks; redundancy; fail-safe design; fire suppression; and
protective clothing, equipment, devices, and procedures.

Protect power sources, controls, and critical components of redundant subsystems by
separation or shielding.

Ensure personnel and equipment protection (when alternate design approaches cannot
eliminate the hazard) provide warning and caution notes in assembly, operations,
maintenance, and repair instructions as well as distinctive markings on hazardous
components and materials, equipment, and facilities. These shall be standardized in
accordance with MA requirements.

Minimize severity of personnel injury or damage to equipment in the event of a mishap.

Design software-controlled or monitored functions to minimize initiation of hazardous
events or mishaps.

Software System Safety Handbook

Introduction to Risk Management and System Safety

k. Review design criteria for inadequate or overly restrictive requirements regarding
safety. Recommend a new design criterion supported by study, analyses, or test data.

A good example of the need for, and the credibility of, a system safety engineering program is the
Air Force aircraft mishap rate improvement since the establishment of the SSP in the design, test,
operations, support, and training processes. In the mid-1950s, the aircraft mishap rates were over
10 per 100,000 flight hours. Today, this rate has been reduced to less than 1.25 per 100,000
flight hours.

Further information regarding the management and implementation of system safety engineering
(and the analyses performed to support the goals and objectives of a SSP) is available through
numerous technical resources. It is not the intent of this Handbook to become another technical
source book for the subject of system safety, but to address the implementation of SSS within the
discipline of system safety engineering. If specific system safety methods, techniques, or
concepts remain unclear, please refer to the list of references in Appendix B for supplemental
resources relating to the subject matter.

With the above information regarding system safety engineering (as a discipline) firmly in tow, a
brief discussion must be presented as it applies to hazards and failure mode identification,
categorization of safety risk in terms of probability and severity, and the methods of resolution.
This concept must be firmly understood as the discussion evolves to the accomplishment of
software safety tasks within the system safety engineering discipline.

3.6 Safety Risk Management

The process of system safety management and engineering is “deceptively simple”** although it

entails a great deal of work. It is aimed at identifying system hazards and failure modes,
determining their causes, assessing hazard severity and probability of occurrence, determining
hazard control requirements, verifying their implementation, and identifying and quantifying any
residual risk remaining prior to system deployment. Within an introduction of safety risk
management, the concepts of hazard identification, hazard categorization, and hazard risk
reduction must be presented. Safety risk management focuses on the safety aspects of technical
risk as it pertains to the conceptual system proposed for development. It attempts to identify and
prioritize hazards that are most severe, and/or have the greatest probability of occurrence. The
safety engineering process then identifies and implements safety risk elimination or reduction
requirements for the design, development, test, and system activation phases of the development
life cycle.

As the concept of safety risk management is further defined, keep in mind that the defined
process is relatively simple and that the effort to control safety risk on a program will most likely
be reduced if the process is followed.

22 System Safety Analysis Handbook, A Resource Book For Safety Practitioners

3-11

Software System Safety Handbook

Introduction to Risk Management and System Safety

3.6.1 Initial Safety Risk Assessment

The efforts of the SSE are launched by the performance of the initial safety risk assessment of the
system. In the case of most DOD procurements, this takes place with the accomplishment of the
Preliminary Hazard List (PHL) and the PHA. These analyses are discussed in detail later in this
Handbook. The primary focus here is the assessment and analysis of hazards and failure modes
that are evident in the proposed system. This section of the Handbook will focus on the basic
principles of system safety and hazard resolution. Specific discussions regarding how software
influences or is related to hazards will be discussed in detail in Section 4.

3.6.1.1 Hazard and Failure Mode Identification

A hazard is defined as follows: A condition that is prerequisite to a mishap. The SSE identifies
these conditions, or hazards. The initial hazard analysis, and the Failure Modes and Effects
Analysis (FMEA) accomplished by the reliability engineer, provides the safety information
required to perform the initial safety risk assessment of identified hazards. Without identified
hazards and failure modes, very little can be accomplished to improve the overall safety of a
system (remember this fact as software safety is introduced). Identified hazards and failure
modes become the basis for the identification and implementation of safety requirements within
the design of the system. Once the hazards are identified, they must be categorized in terms of
safety risk.

3.6.1.2 Hazard Severity

The first step in classifying safety risk requires the establishment of hazard severity within the
context of the system and user environments. This is typically done in two steps, first using the
severity of damage and then applying the number of times that the damage might occur. Table
3-1 provides an example of how severity can be qualified.

Table 3-1: Hazard Severity

For Example Purposes Only

SEVERITY OF

DESCRIPTION CATEGORY HAZARD EFFECT

Catastrophic Death Or System Loss

Critical Severe Injury, Occupational
Illness, Major System Or
Environmental Damage

Marginal Minor Injury, Occupational
Illness, Minor System Or
Environmental Damage

Negligible Less Than Minor Injury,
Illness, System Damage
Or Environmental Damage

3-12

Software System Safety Handbook

Introduction to Risk Management and System Safety

Note that this example is typical to the MIL-STD-882-specified format. As you can see, the
“severity of hazard effect” is qualitative and can be modified to meet the special needs of a
program. There is an important aspect of the graphic to remember for any procurement. In order
to assess safety severity, a benchmark to measure against is essential. The benchmark allows for
the establishment of a qualitative baseline that can be communicated across programmatic and
technical interfaces. It must be in a format language that makes sense among individuals and
between program interfaces.

3.6.1.3 Hazard Probability

The second half of the equation for the determination of safety risk is the identification of the
probability of occurrence. The probability that a hazard or failure mode may occur, given that it
is not controlled, can be determined by numerous statistical techniques. These statistical
probabilities are usually obtained from reliability analysis pertaining to hardware component
failures acquired through qualification programs. Component failure rates from reliability
engineering are not always obtainable. This is especially true on advanced technology programs
where component qualification programs do not exist and “one-of-a-kind” items are procured.
Thus, the quantification of probability to a desired confidence level is not always possible for a
specific hazard. When this occurs, alternative techniques of analysis are required for the
qualification or quantification of hazard probability of hardware nodes. Examples of credible
alternatives include Sensitivity Analysis, Event Tree Diagrams, and FTAs. An example of the
categorization of probability is provided in Table 3-2 and is similar to the format recommended
by MIL-STD-882.

Table 3-2: Hazard Probability
For Example Purposes Only

PROGRAM
DESCRIPTION DESCRIPTION PROBABILITY

Frequent Will Occur 1in 100

Probable Likely To Occur 1in 1000

Occasional Unlikely To Occur, 1in 10,000
But Possible

Very Unlikely To 1in 100,000
Occur

Improbable Assume It Will Not 1in 1,000,000
Occur

As with the example provided for hazard severity, Table 3-2 can be modified to meet the
specification requirements of the user and/or developer. A systems engineering team (to include
system safety engineering) may choose to shift the probability numbers an order of magnitude in

Software System Safety Handbook

Introduction to Risk Management and System Safety

either direction or to include, or reduce, the number of categories. All of the options are
acceptable if the entire team is in agreement. This agreement must definitely include the
customer’s opinions and specification requirements. Also of importance when considering
probability categories is the inclusion of individual units, entire populations, and time intervals
(periods) which are appropriate for the system being analyzed.

3.6.1.4 HRI Matrix

Hazard severity and hazard probability when integrated into a table format produces the HRI
matrix, and the initial HRI risk categorization for hazards prior to control requirements is
implemented. An example of a HRI matrix is provided as Table 3-3. This example was utilized
on a research and development activity where little component failure data was available. This
matrix is divided into three levels of risk as indicated by the grayscale legend beneath the matrix.
HRIs of 1-5 (the darkest gray) are considered unacceptable risk. These risks are considered high
and require resolution or acceptance from the Acquisition Executive (AE). HRIs of 6, 7, 8, and 9
(the medium gray) are considered to be marginal risk; while HRIs of 10 through 16 are minimum
risk. Those hazards deemed marginal should be redesigned for elimination and require PM
approval or risk acceptance. Those hazards deemed minimum should be redesigned to further
minimize their risk and require PM approval or risk acceptance. HRIs 10-16 were considered
lower risk hazards and were put under the cognizance of the lead design engineer and the safety
manager.

Table 3-3: HRI Matrix

[Hazard Risk Index \
For Example Purposes Only

Severity I 1I 11T 1A%
Probability Catastrophic Critical Marginal Negligible
(A) FREQUENT [1] 3] [11]
1IN 100
(B) PROBABLE
1IN 1,000 n B
(C) OCCASIONAL
1IN 10,000 n Izl
(D) REMOTE
11N 100,000 IE‘
(E) IMPROBABLE 17
11N 1,000,000 El .

- Unacceptable Risk - Acquisition Executive Resolution Or Risk Acceptance

I:I Marginal Risk - Design To Eliminate, Requires Program Manager Resolution Or Risk Acceptance /

I:I Minimum Risk - Design To Minimize, Requires Program Manager Resolution Or Risk Acceptance
The true benefit of the HRI matrix is the ability and flexibility to prioritize hazards in terms of
severity and probability. This prioritization of hazards allows the PM, safety manager, and
engineering manager the ability to also prioritize the expenditure and allocation of critical
resources. Although it seems simplistic, a hazard with an HRI of 11 should have fewer resources

expended in its analysis, design, test, and verification than a hazard of 4. Without the availability
of the HRI matrix, the allocation of resources becomes more arbitrary.

3-14

Software System Safety Handbook

Introduction to Risk Management and System Safety

Another benefit of the HRI matrix, is the accountability and responsibility of program and
technical management to the system safety effort. The SwSSP identifies and assigns specific
levels of management authority with the appropriate levels of safety hazard severity and
probability. The HRI methodology holds program management and technical engineering
accountable for the safety risk of the system during design, test and operation, and the residual
risk upon delivery to the customer.

From the perspective of the safety analyst, the HRI is a tool that is used during the entire system
safety effort throughout the product life cycle. Note, however, that the HRI as a tool is more
complex when applied to the evaluation of system hazards and failure modes influenced by
software inputs or software information. Alternatives to the classical HRI are discussed in detail
in Section 4.

3.6.2 Safety Order of Precedence

The ability to adequately eliminate or control safety risk is predicated on the ability to
accomplish the necessary tasks early in the design phases of the acquisition life cycle. For
example, it is more cost effective and technologically efficient to eliminate a known hazard by
changing the design (on paper), than retrofitting a fleet in operational use. Because of this, the
system safety engineering methodology employs a safety order of precedence for hazard
elimination or control. When incorporated, the design order of precedence further eliminates or
reduces the severity and probability of hazard/failure mode initiation and propagation throughout
the system. The following is extracted from MIL-STD-882C, subsection 4.4.

a. Design for Minimum Risk - From the first, design to eliminate hazards. If an identified
hazard cannot be eliminated, reduce the associated risk to an acceptable level, as
defined by the MA, through design selection.

b. Incorporate Safety Devices - If identified hazards cannot be eliminated or their
associated risk adequately reduced through design selection, that risk shall be reduced
to a level acceptable to the MA through the use of fixed, automatic, or other protective
safety design features or devices. Provisions shall be made for periodic functional
checks of safety devices when applicable.

c. Provide Warning Devices - When neither design nor safety devices can effectively
eliminate identified hazards or adequately reduce associated risk, devices shall be used
to detect the condition and to produce an adequate warning signal to alert personnel of
the hazard. Warning signals and their application shall be designed to minimize the
probability of incorrect personnel reaction to the signals and shall be standardized
within like types of systems.

d. Develop Procedures and Training - Where it is impractical to eliminate hazards through
design selection or adequately reduce the associated risk with safety and warning
devices, procedures and training shall be used. However, without a specific waiver
from the MA, no warning, caution, or other form of written advisory shall be used as
the only risk reduction method for Category I or II hazards. Procedures may include
the use of personal protective equipment. Precautionary notations shall be standardized

Software System Safety Handbook

Introduction to Risk Management and System Safety

as specified by the MA. Tasks and activities judged to be safety-critical by the MA
may require certification of personnel proficiency.

3.6.3 Elimination or Risk Reduction

The process of hazard and failure mode elimination or risk reduction is based on the design order
of precedence. Once hazards and failure modes are identified by evidence analysis and
categorized, specific (or functionally derived) safety requirements must be identified for
incorporation into the design for the elimination or control of safety risk. Defined requirements
can be applicable for any of the four categories of the defined order of safety precedence. For
example, a specific hazard may have several design requirements identified for incorporation into
the system design. However, to further minimize the safety risk of the hazard, supplemental
requirements may be appropriate for safety devices, warning devices, and operator/maintainer
procedures and training. In fact, most hazards have more than one design or risk reduction
requirement unless the hazard is completely eliminated through the first (and only) design
requirement. Figure 3-3 shows the process required to eliminate or control safety risk via the
order of precedence described in Paragraph 3.6.2.

Hazard Risk Reduction Order of Precedence

Design to
Eliminate

Further
Risk Reduction
Desired

Design to
Reduce
Hazard

Design SW
to Reduce
Hazard

Provide Safety
and Warning
Devices

Analyze
Residual
Risk

Provide
Procedures
& Training

Provide Risk Assessment
i Package for Management :
i and the System Safety Group

Conclude Hazard Analysis andi—) @

: Risk Assessment Activities

Figure 3-3: Hazard Reduction Order of Precedence

Software System Safety Handbook

Introduction to Risk Management and System Safety

Identification of safety-specific requirements to the design and implementation portions of the
system does not complete the safety task. The safety engineer must verify that the derived
requirements have indeed been implemented as intended. Once hazard elimination and control
requirements are identified and communicated to the appropriate design engineers, testing
requirements must be identified for hazards which have been categorized as safety-critical. The
categorization of safety risk in accordance with severity and probability must play a significant
role in the depth of testing and requirements verification methods employed. Very low risk
hazards do not require the same rigor of safety testing to verify the incorporation of requirements
as compared to those associated with safety-critical hazards. In addition, testing cannot always
be accomplished whereas verification methods may be appropriate (i.e., designer sign-off on
hazard record, as-built drawing review, inspection of manufactured components, etc.)

3.6.4 Quantification of Residual Safety Risk

After the requirements are implemented (to the extent possible), and appropriately verified in the
design, the safety engineer must analyze each identified and documented hazard record to assess
and analyze the residual risk that remains within the system during its operations and support
activities. This is the same risk assessment process that was performed in the initial analysis
described in Paragraph 3.6.1. The difference in the analysis is the amount of design and test data
to support the risk reduction activities. After the incorporation of safety hazard elimination or
reduction requirements, the hazard is once again assessed for severity, probability of occurrence,
and an HRI determined. A hazard with an initial HRI of 4 may have been reduced in safety risk
to an HRI of 8. However, since in this example, the hazard was not completely eliminated and
only reduced; there remains a residual safety risk. Granted, it is not as severe or as probable as
the original; but the hazard does exist. Remember that the initial HRI of a hazard is determined
during the PHA development prior to the incorporation or implementation of requirements to
control or reduce the safety risk and is often an initial engineering judgment. The final HRI
categorizes the hazard after the requirements have been implemented and verified by the
developer. If hazards are not reduced sufficiently to meet the safety objectives and goals of the
program, they must be reintroduced to safety engineering for further analyses and safety risk
reduction. It should be noted that risk is generally reduced within a probability category. Risk
reduction across severity levels generally requires a hardware design change.

In conjunction with the safety analysis, and the available engineering data and information
available, residual safety risk of the system, subsystems, user, maintainer, and tester interfaces
must be quantified. Hazard records with remaining residual risk must be correlated within
subsystems, interfaces, and the total system for the purpose of calculating the remaining risk.
This risk must be communicated in detail [via the System Safety Working Group (SSWG) and
the detailed hazard record system], to the PM, the lead design engineers, the test manager, and
the user and fully documented in the hazard database record. If residual risk in terms of safety is
unacceptable to the PM, further direction and resources must be provided to the engineering
effort.

Software System Safety Handbook

Introduction to Risk Management and System Safety

3.6.5 Managing and Assuming Residual Safety Risk

Managing safety risk is another one of those “simple processes” which usually takes a great deal
of time, effort, and resources to accomplish. Referring back to Table 3-3, HRI Matrix, specific
categories must be established in the matrix to identify the level of management accountability,
responsibility, and risk acceptance. Using Table 3-3 as an example, hazards with an HRI of
between 1 through 5 are considered unacceptable®. These hazards, if not reduced to a lower
level below an HRI of 5, cannot be officially closed without the acquisition executive’s signature.
This forces the accountability of assuming this particular risk to the appropriate level of
management (the top manager). However, the PM can officially close hazards from HRI 6
through 20. This is to say that the PM would be at the appropriate level of management to
assume the safety risk to reduce the HRI to a lower category.

Recognize that Tables 3-1 through 3-3 are for purposes of example only. They provide a
graphical representation and depiction of how a program may be set up with three levels of
program and technical management. It is ideal to have the PM as the official sign-off for all
residual safety risk to maintain safety accountability with that individual. Remember that the PM
is responsible for the safety of a product or system at the time of test and deployment. The safety
manager must establish an accountability system for the assumption of residual safety risk based
upon user inputs, contractual obligations, and negotiations with the PM.

> Remember that this is for example purpose only. Within DOD programs HRI 1 through 9
would require the AE’s acceptance of risk.

Software System Safety Handbook

Software Safety Engineering

4. Software Safety Engineering

4.1 Introduction

This section of the Handbook will introduce the managerial process and the technical methods
and techniques inherent in the performance of software safety tasks within the context of a
systems safety engineering and software development program. It will include detailed tasks and
techniques for the performance of safety analysis, and for the traceability of SSRs from design to
test. It will also provide the current “best practices” which may apply as one considers the
necessary steps in establishing a credible and cost-effective SSS program (Figure 4-1).

Software Safety
Engineering
4.0
Software Safety Software Safety Software Safety Safety
Introduction Planning and Task Testing & Risk Assessment
4 Managemth2 Implementat‘itosn Assessmer‘}t4 Report ‘s

Figure 4-1: Section 4 Contents

Section 4 is applicable to all managerial and technical disciplines. It describes the processes,
tools, and techniques to reduce the safety risk of software operating in safety-critical systems.

Its primary purposes are as follows:
* Define a recommended software safety engineering process.

* Describe essential tasks to be accomplished by each professional discipline assigned to
the SSS Team.

* Identify interface relationships between professional disciplines and the individual tasks
assigned to the SSS Team.

» Identify “best practices” to complete the software safety process and describe each of its
individual tasks.

* Recommend “tailoring” actions to the software safety process to identify specific user
requirements.

Section 4 should be reviewed and understood by all systems engineers, system safety engineers,
software safety engineers, and software development engineers. It is also appropriate for review
by PMs interested in the technical aspects of the SSS processes and the possible process
improvement initiatives implemented by their systems engineers, software developers, design
engineers, and programmers. This section not only describes the essential tasks required by the

Software System Safety Handbook

Software Safety Engineering

system safety engineers, but also the required tasks that must be accomplished by the software
safety engineers, systems engineers, and the software developers. This includes the critical
communication interfaces between each functional discipline. It also includes the identification,
communication, and implementation of initial SSRs and guidelines.

The accomplishment of a software safety management and engineering program requires careful
forethought, adequate support from various other disciplines, and timely application of expertise
across the entire software development life cycle. Strict attention to planning is required in order
to integrate the developer’s resources, expertise, and experience with tasks to support contractual
obligations established by the customer. This section focuses on the establishment of a software
safety program within the system safety engineering and the software development process. It
establishes a baseline program that, when properly implemented, will ensure that both initial
SSRs and requirements specifically derived from functional hazards analysis are identified,
prioritized, categorized, and traced through design, code, test, and acceptance.

A goal of this section of the Handbook is to formally identify the software safety duties and
responsibilities assigned to the safety engineer, the software safety engineer, the software
engineer, and the managerial and technical interfaces of each through sound systems engineering
methods (Figure 4-2). This section of the Handbook will identify and focus on the logical and
practical relationships between the safety, design, and software disciplines. It will also provide
the reader with the information necessary for the assignment of software safety responsibilities,
and the identification of tasks attributed to system safety, software development, as well as
hardware and digital systems engineering.

(Software System Safety \

Who’s Responsible?

Systems Engineer Program Manager

& The Interface

Tasks

]
vafety Engineer Software Engineelj

Figure 4-2: Who is Responsible for SSS?

This Handbook assumes a novice’s understanding of software safety engineering within the
context of system safety and software engineering. Note that many topics of discussion within
this section are considered constructs within basic system safety engineering. This is due to the
fact that it is impossible to discuss software safety outside of the domain of system safety

4-2

Software System Safety Handbook

Software Safety Engineering

engineering and management, systems engineering, software development, and program
management.

41.1 Section 4 Format

This section is formatted specifically to present both graphical and textual descriptions of the
managerial and technical tasks that must be performed for a successful software safety-
engineering program. Each managerial process task and technical task, method, or technique will
be formatted to provide the following:

e Graphical representation of the process step or technical method

e Introductory and supporting text

e Prerequisite (input) requirements for task initiation

* Activities required to perform the task (including interdisciplinary interfaces)
* Associated subordinate tasks

» Critical task interfaces

* A description of required task output(s) and/or product(s)

This particular format helps to explain the inputs, activities, and outputs for the successful
accomplishment of activities to meet the goals and objectives of the software safety program.
For those that desire additional information, Appendices A-G are provided to supplement the
information in the main sections of this Handbook. The appendices are intended to provide
practitioners with supplemental information and credible examples for guidance purposes. The
titles of the appendices are as follows:

Appendix A - Definition of Terms

Appendix B - References

Appendix C - Handbook Supplemental Information

Appendix D - Generic Software Safety Requirements and Guidelines
Appendix E - Lessons Learned

Appendix F - Process Chart Worksheets

Appendix G - Examples of Contractual Language [RFP, SOW/Statement of Objectives
(SO0)]

4.1.2 Process Charts

Each software safety-engineering task possesses a supporting process chart. Each chart was
developed for the purpose of providing the engineer with a detailed and complete "road map" for
performing software safety engineering within the context of software design, code, and test

Software System Safety Handbook

Software Safety Engineering

activities. Figure 4-3 provides an example of the depth of information considered for each
process task. The depth of information presented in this figure includes processes, methods,
documents, and deliverables associated with system safety engineering and management
activities. However, for the purposes of this Handbook, these process charts were "trimmed" to
contain the information deemed essential for the effective management and implementation of
the software safety program under the parent SSP. The in-depth process chart worksheets are
provided in Appendix G for those interested in this detailed information.

Next Process

Preceding Process

« Software Detailed Design
Subsystem Hazard Analysis -
SSHA

Purpose:

To Analyze Subsystem Interfaces & Interactions, Interface Design, and

System Hazard Analysis (SHA P
4 ysis () « Software Safety Test Planning

Outputs (Customers)

Inputs (Suppliers

* PHA System Functional and Physical Requirements for Safety Hazards and to * Input to SPRA Reviews

* Draft SSHAs e] s « Updates to PHA

. SSS Assess and Classify System Risks + Updates to SSHAS

+ S/SDD Primary Sub-Processes * HARs

« IRS « Inputs to Software Design

« IDD « Analyze IRS, IDD to Ensure Correct Implementation of Safety Design Requirements | < Inputs to Interface Design

+ Tailored Generic Safety-Critical I « Inputs to Test Requirements
Software Design Requirements « Integrate the Results of the SSHAs(U) « Inputs to Test Plan
List — Identify Hazards That Cross Subsystem Boundaries (I) * Prioritized Hazard List

+ Incident Reports

— Ensure That Hazards Are Mitigated in Interfacing Subsystems or External

« List of Causal Interrelationships to

« Threat Hazard Assessment Systems (I) Hazards
« Life Cycle Environmental Profile — Identify Unresolved Interface Safety Issues and Reflect Back to SSHAs (I)
+ HARs « Examine Causal Relationship of Multiple Failure Modes (HW, SW) to Creating
+ Lessons Learned Software System Hazards (I)
« Determine Compliance With Safety Criteria and System and Subsystem Requirement:
Documents (I)
+ Assess Hazard Impacts Related to Interfaces (I)
+ Develop Recommendations to Minimize Hazard Effects (I)
« Develop Test Recommendations to Verify Hazard Mitigation (I)
Entry Criteria Exit Objective

 System Design Review Related Sub-Processes * Milestone 3

Players References in Addition to §4.1.1
SSWG
SWSWG

\ Comments

N

Figure 4-3: Example of Initial Process Chart

Each process chart presented in this handbook will contain the following:
e Primary task description
* Task inputs
* Task outputs
* Primary sub-process tasks

e C(ritical interfaces

44

Software System Safety Handbook

Software Safety Engineering

4.1.3 Software Safety Engineering Products

The specific products to be produced by the accomplishment of the software safety engineering
tasks are difficult to segregate from those developed within the context of the SSP. It is likely,
within individual programs, that supplemental software safety documents and products will be
produced to support the system safety effort. These may include supplemental analysis, Data
Flow Diagrams (DFD), functional flow analysis, and software requirements specifications (SRS)
and the development of Software Analysis Folders (SAF). This Handbook will identify and
describe the documents and products that the software safety tasks will either influence or
generate. Specific documents include the following:

a. System Safety Program Plan (SSPP)
b. Software Safety Program Plan (SwSPP)
c. Generic Software Safety Requirements List (GSSRL)
d. Safety-Critical Functions List (SCFL)
e. PHL
f. PHA
Subsystem Hazard Analysis (SSHA)
h. Safety Requirements Criteria Analysis (SRCA)
i. System Hazard Analysis (SHA)
j. Safety Assessment Report (SAR)

4.2 Software Safety Planning Management

The software safety program must be integrated with and parallel to both the SSP and the
software development program milestones. The software safety analyses must provide the
necessary input to software development milestones such that safety design requirements,
implementation recommendations, or design changes can be incorporated into the software with
minimal impact. Program planning precedes all other phases of the SSS program and is perhaps
the single most important step in the overall safety program. Inadequately specified safety
requirements in the contractual documents generally lead to program schedule and cost impacts
later when safety issues arise and the necessary system safety engineering has not been
accomplished. The software aspects of system safety tend to be more problematic in this area
since the risk associated with the software is often ignored or not well understood until late in the
system design. Establishing the safety program and/or performing the necessary safety analyses
later in the program results in delays, cost increases, and a less effective safety program.

The history of software-related safety issues, as derived from lessons learned, establishes the
need for a practical, logical, and disciplined approach to reducing the safety risk of software
performing safety-critical functions within a system. This managerial and engineering discipline
must be established “up front” and must be included in the planning activities that both describe

Software System Safety Handbook

Software Safety Engineering

and document the breadth and depth of the program. Detailed planning ensures the identification
of critical program interfaces and support and establishes formal lines of communication between
disciplines and among engineering functions. Depicted in Figure 4-4, he potential for program
success increases through sound planning activities that identify and formalize the managerial
and technical interfaces of the program. To minimize the depth of the material presented,
supporting and supplemental text is provided in Appendix C.

4)

Software Safety
Planning and
M anagemen})

Planning Managing
4.2.1 4.2.2

. /

Figure 4-4: Software Safety Planning

This section is applicable to all members of the SSS Team. It assumes a minimal understanding
and experience with safety engineering programs. The topics include the following:

a. Identification of managerial and technical program interfaces required by the SSS Team.

b. Definition of user and developer contractual relationships to ensure that the SSS Team
implements the tasks, and produces the products, required to meet contractual
requirements.

c. Identification of programmatic and technical meetings and reviews normally supported by
the SSS Team.

d. Identification and allocation of critical resources to establish a SSS Team and conduct a
software safety program.

e. Definition of planning requirements for the execution of an effective program.

The planning for an effective SSP and software safety program requires extensive forethought
from both the supplier and the customer. Although they both envision a perfect SSP, there are
subtle differences associated with the identification, preparation, and execution of a successful
safety program from these two perspectives. The contents of Figures 4-5 and 4-6 represent the
primary differences between agencies that both must understand before considering the software
safety planning and coordinating activities.

4.2.1 Planning

Comprehensive planning for the software safety program requires an initial assessment of the
degree of software involvement in the system design and the associated hazards. Unfortunately,

4-6

Software System Safety Handbook

Software Safety Engineering

this is difficult since little is usually known about the system other than operational requirements
during the early planning stages. Therefore, the safety SOW must encompass all possible
designs. This generally results in a fairly generic SOW that will require later tailoring of a SSS
program to the system design and implementation.

Figure 4-5 represents the basic inputs, outputs, tasks, and critical interfaces associated with the
planning requirements associated with the PA. Frustrations experienced by safety engineers
executing the system safety tasks can usually be traced back to the lack of adequate planning by
the customer. The direct result is normally an under-budget, under-staffed safety effort that does
not focus on the most critical aspects of the system under development. This usually can be
traced back to the customer not assuring that the Request for Proposal (RFP), SOW, and the
contract contain the correct language, terminology, and/or tasks to implement a safety program
and the required or necessary resources. Therefore, the ultimate success of any safety program
strongly depends on the planning function by the customer.

Inputs Outputs

Acquisition Policy
OCD or MENS
DOP

Proposal

Safety Policy
Generic Requirements
Lessons Learned
Preliminary Hazard List

e Input to the SOW/SOO

¢ Input to the RFP

¢ Safety POA&M

* System Safety Program
Plan w/Software Safety
Appendix

* SSWG Charter

* Inputs to SDP, TEMP,

SEMP, ILSP, PHL, PHA,

and CRLCMP

Primary Task

Software Safety
Program Planning
Procuring Agency
(Customer)

Iterative Loop

Primary Sub-Tasks Critical Interfaces

Establish System Safety Program
Define Acceptable Levels of Risk (HRI)
Establish Program Interfaces
Establish Contract Deliverables
Establish Hazard Tracking Process
Establish Resource Requirements

* Program Management
* Contracts

* Systems Engineering (Hardware & Software)
¢ Design Engineering (Hardware & Software)

* Software Engineering

* Support Engineering Disciplines

Figure 4-5: Software Safety Planning by the Procuring Authority

For the PA, software safety program planning begins as soon as the need for the system is
identified. The PA must identify points of contact within the organization and define the
interfaces between various engineering disciplines, administrative support organizations,
program management, contracting group, and Integrated Product Teams (IPT) within the PA to
develop the necessary requirements and specifications documents. In the context of acquisition
reform, invoking military standards and specifications for DOD procurements is not permitted or
is significantly reduced. Therefore, the PA must incorporate the necessary language into any
contractual documents to ensure that the system under development will meet the safety goals
and objectives.

PA safety program planning continues through contract award and may require periodic updating
during initial system development and as the development proceeds through various phases.

4-7

Software System Safety Handbook

Software Safety Engineering

However, management of the overall SSP continues through system delivery and acceptance and
throughout the system’s life cycle. After deployment, the PA must continue to track system
hazards and risks and monitor the system in the field for safety concerns identified by the user.
The PA must also make provisions for safety program planning and management for any
upgrades, product improvements, maintenance, technology refreshment, and other follow-on
efforts to the system.

The major milestones affecting the PA’s safety and software safety program planning include
release of contract requests for proposals or quotes, proposal evaluation, major program
milestones, system acceptance testing and evaluation, production contract award, initial
operational capability (release to the users), and system upgrades or product improvements.

Although the Developing Agency’s (DA) software safety program planning begins after receipt
of a contract RFP, or quotes, the DA can significantly enhance his/her ability to establish an
effective program through prior planning (see Figure 4-6). Prior planning includes establishing
effective systems engineering and software engineering processes that fully integrate system and
software systems safety. Corporate engineering standards and practices documents that
incorporate the tenets of system safety provide a strong baseline from which to build a successful
SSP even though the contract may not contain specific language regarding the safety effort.

/ Inputs Outputs \
4 N

¢ Statement of Work \ . RFP/P 11 ¢
Request For Proposal Prlmary Task /Proposal Inpu

OCD or MENS

Safety Policy

Preliminary Hazard List

¢ Safety POA&M
¢ Requirements Review

: Software Safety
Program Planning

BAFO Response
System Safety Program
Plan w/Software Safety

Developing Agency Appendix
(Supplier) + SSWG Charter
¢ Inputs to SDP, TEMP,
< - - — — — - - — — = SEMP, ILSP, PHL, PHA,
_ -/ Iterative Loop \ *nd CRLCMP -/
Primary Sub-Tasks Critical Interfaces

Program Management

Contracts

Systems Engineering (Hardware & Software)
Design Engineering (Hardware & Software)
Support Engineering Disciplines

S -/

Figure 4-6: Software Safety Planning by the Developing Agency

Interpretation of SOW Requirements
Resource Requirements Determination
Establish System Safety Program
Develop Software Safety Program Plan

Acquisition reform recommends that the Government take a more interactive approach to system
development without interfering with that development. The interactive aspect is to participate
as a member of the DA’s IPTs as an advisor without hindering development. This requires a
careful balance on the part of the government participants. From the system safety and SSS
perspective, that includes active participation in the appropriate IPTs by providing the
government perspective on recommendations and decisions made in those forums. This also

4-8

Software System Safety Handbook

Software Safety Engineering

requires the government representative to alert the developer to hazards known to the
government but not to the developer.

Acquisition reform also requires the DA to warrant the system thus making the DA liable for any
mishaps that occur, even after system acceptance by the PA. Although the courts have yet to
fully test that liability, the DA can significantly reduce his/her liability through this interactive
process. Having government representatives present when making safety-related decisions
provides an inherent “buy-in” by the Government to the residual risks in the system. This has the
effect of significantly reducing the DA’s liability.** MIL-STD 882D also implies this reduction in
liability.

Where is this discussion leading? Often, contract language is non-specific and does not provide
detailed requirements, especially with respect to safety requirements for the system. Therefore, it
is the DA’s responsibility to define a comprehensive SSP that will ensure that the delivered
system provides an acceptably low level of safety risk to the customer, not only for the
customer’s benefit, but for the DA’s benefit as well. At the same time, the DA must remain
competitive and reduce safety program costs to the lowest practical level consistent with ensuring
the delivery of a system with the lowest risk practical. Although the preceding discussion
focused on the interaction between the Government and the DA, the same tenets apply to any
contractual relationship, especially between prime and subcontractors.

The DA software safety planning continues after contract award and requires periodic updates as
the system proceeds through various phases of development. These updates should be in concert
with the PA’s software safety plans. However, management of the overall system and SSS
programs continues from contract award through system delivery and acceptance and may extend
throughout the system life cycle, depending on the type of contract. If the contract is a Total
System Responsibility contract or requires the DA perform routine maintenance, technology
refreshments, or system upgrade, the software safety program management and engineering must
continue throughout the system’s life cycle. Thus, the DA must make provisions for safety
program planning and management for these phases and other follow-on efforts on the system.

The major milestones affecting the DA’s safety and software safety program planning include the
receipt of contract requests for proposals or quotes, contract award, major program milestones,
system acceptance testing and evaluation, production contract award, release to the customer,
system upgrades, and product improvements.

While the software safety planning objectives of the PA and DA may be similar, the planning
and coordination required to meet these objectives may come from different angles (in terms of
specific tasks and their implementation), but they must be in concert (Figure 4-7). Regardless,
both agencies must work together to meet the safety objectives of the program. In terms of
planning, this includes the following:

e Establishment of a SSP

* Definition of acceptable levels of safety risk

?% This represents a consensus opinion of lawyers and legal experts in the practice of defending
government contractors in liability cases.

49

Software System Safety Handbook

Software Safety Engineering

e Definition of critical program, management, and engineering interfaces
* Definition of contract deliverables

* Development of a Software Hazard Criticality Matrix (SHCM) (see Paragraph 4.2.1.5)

4)

KNOW THE DETAILS!
(@) S
% SoOwW RFP g
Contract

_ USER DEVELOPER -/

Figure 4-7: Planning the Safety Criteria Is Important

4.2.1.1 Establish the System Safety Program

The PA must establish the safety program as early as practical in the development of the system.
The PM should identify a Principal for Safety (PFS — Navy term) or other safety manager early in
the program to serve as the single point of contact for all safety-related matters on the system.
This individual will interface with safety review authorities, the DA safety team, PA and DA
program management, the safety engineering team, and other groups as required to ensure that
the safety program is effective and efficient. The PFS may also establish and chair a Software
Systems Safety Working Group (SWSWG) or SSS Team. For large system developments where
software is likely to be a major portion of the development, a safety engineer for software may
also be identified who reports directly to the overall system PFS. The size of the safety
organization will depend on the complexity of the system under development, and the inherent
safety risks. Another factor influencing the size of the PM’s safety team is the degree of
interaction with the customer and supplier and the other engineering and program disciplines. If
the development approach is a team effort with a high degree of interaction between the
organizations, the safety organization may require additional personnel to provide adequate
support.

The PA should prepare a System Safety Management Plan (SSMP) describing the overall safety
effort within the PA organization and the interface between the PA safety organization and the
DA’s system safety organization. The SSMP is similar to the SSPP in that it describes the roles
and responsibilities of the program office individuals with respect to the overall safety effort.
The PFS or safety manager should coordinate the SSMP with the DA’s SSPP to ensure that the
tasks and responsibilities are complete and will provide the desired risk assessment. The SSMP
differs from the SSPP in that it does not describe the details of the safety program, such as

4-10

Software System Safety Handbook

Software Safety Engineering

analysis tasks, contained in the SSPP. A special note with regard to programs initiated under
MIL-STD-882D. MIL-STD-882D does not require or contain a Contract Deliverable
Requirements List (CDRL) listing for a SSPP. However, Section 4.1 requires that the PM and
the developer document the “agreed upon” system safety process. This is virtually identical to
the role of the SSPP. Therefore, the PFS or safety manager coordinates the SSMP with this
documented safety process.

The PA must specify the software safety program for programs where software performs or
influences safety-critical functions of the system. The PA must establish the team in accordance
with contractual requirements, managerial and technical interfaces and agreements, and the
results of all planning activities discussed in previous sections of this Handbook. Proper and
detailed planning will increase the probability of program success. The tasks and activities
associated with the establishment of the SSP are applicable to both the supplier and the customer.
Unfortunately, the degree of influence of the software on safety-critical functions in the system is
often not known until the design progresses to the point of functional allocation of requirements
at the system level.

The PM must predicate the software safety program on the goals and objectives of the system
safety and the software development disciplines of the proposed program. The safety program
must focus on the identification and tracking (from design, code, and test) of both initial SSRs
and guidelines, and those requirements derived from system-specific, functional hazards
analyses. Common deficiencies in software safety programs are usually the lack of a team
approach in addressing both the initial and the functional SSRs of a system. The software
development community has a tendency to focus on only the initial SSRs while the system safety
community may focus primarily on the functional SSRs derived through hazard analyses. A
sound SSS program traces both sets of requirements through test and requirements verification
activities. The ability to identify (in total) all applicable SSRs is essential for any given program
and must be adequately addressed.

4.2.1.2 Defining Acceptable Levels of Risk

One of the key elements in safety program planning is the identification of the acceptable level of
risk for the system. This process requires both the identification of a HRI and a statement of the
goal of the safety program for the system. The former establishes a standardized means with
which to group hazards by risk (e.g., unacceptable, undesirable, etc.) while the latter provides a
statement of the expected safety quality of the system. The ability to categorize specific hazards
into the HRI matrix is based upon the ability of the safety engineer to assess hazard severity and
likelihood of occurrence. The PA, in concert with the user, must develop a definition of the
acceptable risk and provide that to the DA. The PA must also provide the developer with
guidance on risk acceptance authorities and reporting requirements. DOD 5000.2R requires that
high-risk hazards (Unacceptable hazard per MIL-STD-882) obtain component CAE signature for
acceptance. Serious risk hazards (Undesirable) require acceptance at the PEO level. The DA
must provide the PM supporting documentation for the risk acceptance authority.

4-11

Software System Safety Handbook

Software Safety Engineering

4.2.1.3 Program Interfaces

System safety engineering is responsible for the coordination, initiation, and implementation of
the software safety engineering program. While this responsibility cannot be delegated to any
other engineering discipline within the development team, software safety must assign specific
tasks to the engineers with the appropriate expertise. Historically, system safety engineering
performs the engineering necessary to identify, assess, and eliminate or reduce the safety risk of
hazards associated with complex systems. Now, as software becomes a major aspect of the
system, software safety engineering must establish and perform the required tasks and establish
the technical interfaces required to fulfill the goals and objectives of the system safety (and
software safety) program. However, the SSS Team cannot accomplish this independently
without the inter-communication and support from other managerial and technical functions.
Within the DOD acquisition and product development agencies, [PTs have been established to
ensure the success of the design, manufacture, fabrication, test, and deployment of weapon
systems. These IPTs formally establish the accountability and responsibility between functions
and among team members. This accountability and responsibility is both from the top down
(management-to-engineer) and from the bottom up (engineer-to-management).

The establishment of a credible SSS activity within an organization requires this same rigor in
the identification of team members, the definition of program interfaces, and the establishment of
lines of communication. Establishing formal and defined interfaces allows program and
engineering managers to assign required expertise for the performance of the identified tasks of
the software safety engineering process. Figure 4-8 shows the common interfaces necessary to
adequately support a SWSSP. It includes management interfaces, technical interfaces, and
contractual interfaces.

Program
Management

HW & SW Design

System Safety Engineering

Engineering ,

Software
Engineering

HW & SW
Systems
Engineering

Support

Figure 4-8: Software Safety Program Interfaces

4.2.1.3.1 Management Interfaces
The PM, under the authority of the AE or the PEO:

» Coordinates the activities of each professional discipline for the entire program,

4-12

Software System Safety Handbook

Software Safety Engineering

e Allocates program resources,
* Approves the programs’ planning documents, including the SSPP, and

* Reviews safety analyses; accepts impact on system for Critical and higher category
hazards (based upon acceptable levels of risk); and submits finding to PEO for acceptance
of unmitigated, unacceptable hazards.

It is the PM’s responsibility to ensure that processes are in place within a program that meet, not
only the programmatic, technical, and safety objectives, but also the functional and system
specifications and requirements of the customer. The PM must allocate critical resources within
the program to reduce the sociopolitical, managerial, financial, technical, and safety risk of the
product. Therefore, management support is essential to the success of the SSS program.

The PM ensures that the safety team develops a practical process and implements the necessary
tasks required to:

* Identify system hazards,
* (Categorize hazards in terms of severity and likelihood,
* Perform causal factor analysis,

* Derive hardware and software design requirements to eliminate and/or control the
hazards,

* Provide evidence for the implementation of hardware and software safety design
requirements,

* Analyze and assess the residual safety risk of any hazards that remain in the design at the
time of system deployment and operation, and

* Report the residual safety risk and hazards associated with the fielded system to the
appropriate acceptance authority.

The safety manager and the software engineering manager depend on program management for
the allocation of necessary resources (time, tools, training, money, and personnel) for the
successful completion of the required SSS engineering tasks.

Within the DOD framework, the AE (Figure 4-9) is ultimately responsible for the acceptance of
the residual safety risk at the time of test, initial systems operation, and deployment. The AE
must certify at the Test Readiness Review (TRR), and the Safety Program Review Authority
(SPRA) [sometimes referred to as a Safety Review Board (SRB)], that all hazards and failure
modes have been eliminated or the risk mitigated or controlled to a level As-Low-As-
Reasonably-Possible (ALARP). At this critical time, an accurate assessment on the residual
safety risk of a system facilitates informed management and engineering decisions. Under the
old acquisition process, without the safety risk assessment provided by a credible system safety
process, the AE assumed the personal, professional, programmatic, and political liabilities in the
decision making process. If the PM failed to implement effective system and SSS programs,

4-13

Software System Safety Handbook

Software Safety Engineering

he/she may assume the liability due to failure to follow DOD directives. The developer now
assumes much of that liability under acquisition reform. The ability of the PFS or safety manager
to provide an accurate assessment of safety risk depends on the support provided by program
management throughout the design and development of the system. Under acquisition reform,
the government purchases systems as if they are off-the-shelf products. The developer warrants
the system for performance and safety characteristics thus making the developer liable for any
mishaps that occur. However, the AE is ultimately responsible for the safety of the system and
the assessment and acceptance of the residual risk. The developer’s safety team, in coordination
with the PA’s safety team must provide the AE with the accurate assessment of the residual risk
such that he/she can make informed decisions. Again, this is also implied by MIL-STD 882D.

(Acquisition Executive

Figure 4-9: Ultimate Safety Responsibility

4.2.1.3.2 Technical Interfaces

The engineering disciplines associated with system development must also provide technical
support to the SSS Team (Figure 4-10). Engineering management, design engineers, systems
engineers, software development engineers, Integrated Logistics Support (ILS), and other domain
engineers supply this essential engineering support. Other domain engineers include reliability,
human factors, quality assurance (QA), test and evaluation, verification and validation,
maintainability, survivability, and supportability. Each member of the engineering team must
provide timely support to the defined processes of the SSS Team to accomplish the safety
analyses and for specific design influence activities which eliminate, reduce, or control hazard
risk. This includes the traceability of SSRs from design-to-test (and test results) with its
associated and documented evidence of implementation.

A sure way for the software safety activity to fail is to not secure software engineering acceptance
and support of the software safety process, functions, and implementation tasks. One must
recognize that most formal education and training for software engineers and developers does not
present, teach, or rationalize system safety. The system safety process relating to the derivation
of functional SSR through hazard analyses is foreign to most software developers. In fact, the
concept that software can be a causal factor to a hazard is foreign to many software engineers.

4-14

Software System Safety Handbook

Software Safety Engineering

Software System Safety Team
I I I

System Safety Systems & Domain Software
Engineering Engineering Engineering

v v v

* System Safety PM * Systems Engineer * Software Engineer
* Principle For Safety * Domain Design Engineer « Digital Systems Engineer
* System Safety Engineer * Software Quality Assurance
* Software Safety Engineer * Software Safety Engineer
* Software Test Engineer

Figure 4-10: Proposed SSS Team Membership

Without the historical experience of cultivating technical interfaces between software
development and system safety engineering, several issues may need resolution. They include:

Software engineers may feel threatened that system safety has the responsibility for
activities considered part of the software engineering realm

Software developers are confident enough in their own methods of error detection, error
correction, and error removal, that they ignore the system safety inputs to the design
process. This is normally in support of initial SSRs

There is insufficient communication and resource allocation between software
development and system safety engineering to identify, analyze, categorize, prioritize, and
implement both generic and derived SSRs

A successful SSS effort requires the establishment of a technical SSS Team approach. The SSP
Manager, in concert with the systems engineer and software engineering team leaders must
define the individual tasks and specific team expertise required and assigns responsibility and
accountability for the accomplishment of these tasks. The SwSPP must include the identification
and definition of the required expertise and tasks in the software safety portion or appendix. The
team must identify both the generic SSRs and guidelines and the functional safety design
requirements derived from system hazards and failure modes that have specific software input or
influence. Once these hazards and failure modes are identified, the team can identify specific
safety design requirements through an integrated effort. All SSRs must be traceable to test and
be correct, complete, and testable where possible. The Requirements Traceability Matrix (RTM)
within the SRCA documents this traceability. The implemented requirements must eliminate,
control, or reduce the safety risk as low as reasonably possible while meeting the user
requirements within operational constraints. Appendix C.3 contains supplemental information
pertaining to the technical interfaces.

4-15

Software System Safety Handbook

Software Safety Engineering

4.2.1.3.3 Contractual Interfaces

Management planning for the SSS function includes the identification of contractual interfaces
and obligations. Each program has the potential to present unique challenges to the system safety
and software development managers. These may include a RFP that does not specifically address
the safety of the system, to contract deliverables that are extremely costly to develop. Regardless
of the challenges, the tasks needed to accomplish a SSS program must be planned to meet both
the system and user specifications and requirements and the safety goals of the program. The
following are those contractual obligations that are deemed to be most essential for any given
contract:

e RFP
* SOW
* Contract
* CDRL
Example templates of a RFP and SOW/SOO are contained in Appendix G.

4.2.1.4 Contract Deliverables

The SOW defines the deliverable documents and products (e.g., CDRLs) desired by the
customer. Each CDRL deliverable should be addressed in the SSPP to include the necessary
activities and process steps required for its production. Completion of contract deliverables is
normally tied to the acquisition life cycle of the system being produced and the program
milestones identified in the Systems Engineering Management Plan (SEMP). The planning
required by the system safety manager ensure that the system safety and software safety processes
provide the necessary data and output for the successful accomplishment of the plans and
analysis. The system safety schedule should track closely to the SEMP and be proactive and
responsive to both the customer and the design team. Contract deliverables should be addressed
individually on the safety master schedule and within the SSPP whether these documents are
contractual deliverables or internal documents required to support the development effort.

As future procurements under acquisition reform will generally not have specific military and
DOD standards and few if any deliverables, the PA must ensure that sufficient deliverables are
identified and contractually required to meet programmatic and technical objectives.

This activity must also specify the content and format of each deliverable item. As existing
government standards transition to commercial standards and guidance, the safety manager must
ensure that sufficient planning is accomplished to specify the breadth, depth, and timeline of each
deliverable [which is normally defined by Data Item Descriptions (DID)]. The breadth and depth
of the deliverable items must provide the necessary audit trail to ensure that safety levels of risk
is achieved (and are visible) during development, test, support transition, and maintenance in the
out-years. The deliverables must also provide the necessary evidence or audit trail for validation
and verification of SSRs. The primary method of maintaining a sufficient audit trail is the
utilization of a developer’s safety data library (SDL). This library would be the repository for all

4-16

Software System Safety Handbook

Software Safety Engineering

safety documentation. Appendix C, Section C.1 describes the contractual deliverables that
should be contained in the SDL.

4.2.1.5 Develop Software Hazard Criticality Matrix

Criteria described in MIL-STD-882 provides the basis for the HRI (described in Paragraph
3.6.1.4). This example may be used for guidance, or an alternate HRI may be proposed. The
given HRI methodology used by a program must possess the capability to graphically delineate
the boundaries between acceptable, allowable, undesirable (i.e., serious), and unacceptable (i.e.,
high) risk. Figure 4-11 provides a graphical representation of a risk acceptance matrix. In this
example, the hazard record database contains 10 hazards, which currently remain in the
unacceptable categories (categories IA, IB, IC, IIA, IIB, and IITA), of safety risk. This example
explicitly states that the hazards represented in the unacceptable range must be resolved.

HAZARD CATEGORIES

1l 1} v
CRITICAL MARGINAL NEGLIGIBLE

FREQUENCY OF |
OCCURRENCE | CATASTROPHIC

A - FREQUENT

- PROBABLE 0

0

D - REMOTE 3 0

E - IMPROBABLE 1 1 1 0
Legend:

V-V | =3 (o8 | V- [=3[V:\l UNACCEPTABLE, condition must be resolved. Design action is
required to eliminate or control hazard.

UNDESIRABLE, Program Manager decision is required. Hazard must
be controlled or hazard probability reduced.

IE, lIE, llID, llIE, ALLOWABLE, with Program Manager review. Hazard control desirable
IVA, IVB if cost effective.
IVC, IVD, IVE ACCEPTABLE without review. Normally not cost effective to control.

Hazard is either negligible or can be assumed will not occur.

Figure 4-11: Example of Risk Acceptance Matrix

The ability to categorize specific hazards into the above matrix is based upon the ability of the
safety engineer to assess their severity and likelihood of occurrence. Historically, the traditional
HRI matrix did not include the influence of the software on the hazard occurrence. The rationale
for this is twofold: When the HRI matrix was developed, software was generally not used in
safety-critical roles. Second, applying failure probabilities to software is impractical. The
traditional HRI uses the hazard severity and probability of occurrence to assign the HRI with
probabilities defined in terms of mean time between failure, probability of failure per operation,
or probability of failure during the life cycle, depending on the nature of the system. This relies
heavily on the ability to obtain component reliability information from engineering sources.
However, applying probabilities of this nature to software, except in purely qualitative terms, is
impractical. Therefore, software requires an alternative methodology. Software does not fail in
the same manner as hardware. It does not wear out, break, or have increasing tolerances that

4-17

Software System Safety Handbook

Software Safety Engineering

result in failures. Software errors are generally errors in the requirements (failure to anticipate a
set of conditions that lead to a hazard, or influence of an external component failure on the
software) or implementation errors (coding errors, incorrect interpretation of design
requirements). If the conditions occur that cause the software to not perform as expected, a
failure occurs. Therefore, reliability predictions become a prediction of when the specific
conditions will occur that cause it to fail. Without the ability to accurately predict a software
error occurrence, alternate methods of hazard categorization must be available when the hazard
possesses software causal factors.

During the early phases of the safety program, the prioritization and categorization of hazards is
essential for the allocation of resources to the functional area possessing the highest risk
potential. This section of the Handbook presents a method of categorizing hazards having
software causal factors strictly for purposes of allocation of resources to the SSS program. This
methodology does not provide an assessment of the residual risk associated with the software at
the completion of development. However, the execution of the safety program, the development
and analysis of SSRs and the verification of their implementation in the final software provide
the basis for a qualitative assessment of the residual risk in traditional terms.

4.21.5.1 Hazard Severity

Regardless of the hazard causal factors (hardware, software, human error, or environment) the
severity of the hazard remains constant. The consequence of a hazard’s occurrence remains the
same regardless of what actually caused the hazard unless the design of the system somehow
changes the possible consequence. As the hazard severity is the same, the severity table
presented in Paragraph 3.6.1.2 (Table 3-1, Hazard Severity), remains an applicable criteria for the
determination of hazard criticality for those hazards having software causal factors.

4.2.1.5.2 Hazard Probability

The difficulty of assigning useful probabilities to faults or errors in software requires a
supplemental method of determining hazard risk where software causal factors exist. Figure 4-
12 demonstrates that in order to determine a hazard probability, the analyst must assess the
software causal factors in conjunction with the causal factors from hardware, human error, and
other factors. The determination of hardware and human error causal factor probabilities remains
constant (although there is significant disagreement regarding assigning probabilities to human
error) in terms of historical “best” practices. Regardless, the risk assessment process must
address the contribution of the software to the hazard’s cumulative risk.

4-18

Software System Safety Handbook

Software Safety Engineering

ROOT
HAZARD
| |
Software Hardware Human
Error
Likelihood Likelihood Likelihood
of Occurrence of Occurrence of Occurrence
Based Upon Based Upon Based Upon
Software Component Trained
Faults/Errors Failures Individuals
2.X.1027 1.X.104 1.X.103

Example

Example

Example

Figure 4-12: Likelihood of Occurrence Example

There have been numerous methods of determining the software’s influence on system-level
hazards. Two of the most popular are presented in MIL-STD-882C and RTCA DO-178B (see
Figure 4-13). These do not specifically determine software-caused hazard probabilities, but
instead assess the software’s “control capability” within the context of the software causal
factors. In doing so, each software causal factor can be labeled with a software control category
for the purpose of helping to determine the degree of autonomy that the software has on the
hazardous event. The SSS Team must review these lists and tailor them to meet the objectives of

the SSP and software development program.

/ MIL-STD-882C

RTCA-DO-178B

~

(I) Software exercises autonomous control over potentially hazardous
hardware systems, subsystems or components without the possibility of
intervention to preclude the occurrence of a hazard. Failure of the software
or a failure to prevent an event leads directly to a hazards occurrence.

(lla) software exercises control over potentially hazardous hardware
systems, subsystems, or components allowing time for intervention by
independent safety systems to mitigate the hazard. However, these
systems by themselves are not considered adequate.

(llb) software item displays information requiring immediate operator
action to mitigate a hazard. Software failure will allow or fail to prevent

the hazard’s occurrence.

(Ila) software items issues commands over potentially hazardous
hardware systems, subsystem, or components requiring human action to
complete the control function. There are several, redundant, independent
safety measures for each hazardous event.

(|||b) Software generates information of a safety critical nature used to make
safety critical decisions. There are several, redundant, independent safety
measures for each hazardous event.

(|V) Software does not control safety critical hardware systems, subsystems,

onnents and does not provide safety critical information.

(A) Software whose anomalous behavior, as shown by the system
safety assessment process, would cause or contribute to a failure
of system function resulting in a catastrophic failure condition for
the aircraft.

(B) Software whose anomalous behavior, as shown by the System
Safety assessment process, would cause or contribure to a failure
of system function resulting in a hazardous/severe-major failure
condition of the aircraft.

(C) Software whose anomalous behavior, as shown by the system
safety assessment process, would cause or contribute to a failure
of system function resulting in a major failure condition for the

the aircraft.

(D) Software whose anomalous behavior, as shown by the system
safety assessment process, would cause or contribute to a failure of
system function resulting in a minor failure condition for the

aircraft.

(E) Software whose anomalous behavior, as shown by the system

safety assessment process, would cause or contribute to a failure of
function with no effect on aircraft operational capability or pilot
workload. Once software has been confirmed as level E by the

certification authority, no further guidelines of this document apply. /

Figure 4-13: Examples of Software Control Capabilities

Software System Safety Handbook

Software Safety Engineering

Once again, the concept of labeling software causal factors with control capabilities is foreign to
most software developers and programmers. They must be convinced that this activity has utility
in the identification and prioritization of software entities that possess safety implications. In
most instances, the software development community desires the list to be as simplistic and short
as possible. The most important aspect of the activity must not be lost; that is, the ability to
categorize software causal factors in determining the hazard likelihood and the design, code, and
test activities required to mitigate the potential software cause. Autonomous software with
functional links to catastrophic hazards demands more coverage than software that influences
low severity hazards.

4.2.1.5.3 Software Hazard Criticality Matrix

The SHCM, shown in Figure 4-14, assists PMs, SSS Team, and the subsystem and system
designers in allocating resources to the software safety effort.

Software Hazard Criticality Matrix

Extracted from Mil-Std 882C
For Example Purposes Only

Severity
Catastrophic| Critical Marginal | Negligible

Control Category

(|) Software exercises autonomous control over potentially hazardous

hardware systems, subsystems or components without the possibility of 1 IE‘
intervention to preclude the occurrence of ahazard. Failure of the software
or afailure to prevent an event leads directly to a hazards occurrence.

(I1a) Software exercises control over potentially hazardous hardware

systems, subsystems, or components allowing time for intervention by
independent safety systems to mitigate the hazard. However, these
systems by themselves are not considered adequate.

(| | b) Software item displays information requiring immediate operator
action to mitigate a hazard. Software failure will allow or fail to prevent
the hazard' s occurrence.

(I11a) softwareitemsissues commands over potentially hazardous

hardware systems, subsystem, or components requiring human action to
complete the control function. There are several, redundant, independent
safety measures for each hazardous event.

(I11b) Software generates information of a sefety critical nature used to make IZ‘

safety critical decisions. There are several, redundant, independent safety
measures for each hazardous event.

or components and does not provide safety critical information.

(IV) Software does not control safety critical hardware systems, subsystems, |Z|

High Risk - Significant Anayses and Testing Resources

Medium Risk - Requirements and Design Analysis and Depth Testing Required

Moderate Risk - High Levels of Analysis and Testing Acceptable With Managing Activity Approval
Moderate Risk - High Levels of Analysis and Testing Acceptable With Managing Activity Approval
Low Risk - Acceptable

Figure 4-14: Software Hazard Criticality Matrix, MIL-STD-882C

It is not an HRI matrix for software. The higher the Software Hazard Risk Index (SHRI) number,
the fewer resources required to ensure that the software will execute safely in the system context.
The software control measure of the SHCM also assists in the prioritization of software design
and programming tasks. However, the SHRI’s greatest value may be during the functional
allocation phase. Using the SHRI, software safety can influence the design to:

4-20

Software System Safety Handbook

Software Safety Engineering

* Reduce the autonomy of the software control of safety-critical aspects of the system,
* Minimize the number of safety-critical functions in the software, and
* Use the software to reduce the risk of other hazards in the system design.

If conceptual design (architecture) shows a high degree of autonomy over safety-critical
functions, the software safety effort requires significantly more resources. Therefore, the systems
engineering team can consider this factor in the early design phases. By reducing the number of
software modules containing safety-critical functions, the developer reduces the portion of the
software requiring safety assessment and thus the resources required for that assessment. The
systems engineering team must balance these issues with the required and desired capabilities of
the system. Too often, developers rush to use software to control functionality when non-
software alternatives will provide the same capabilities. While the safety risk associated with the
non-software alternatives must still be assessed, the process is likely to be less costly and
resource intensive.

4.2.2 Management

SSS program management (Figure 4-15), like SSP management, begins as soon as the SSP is
established, and continues throughout the system development. Management of the effort
requires a variety of tasks or processes, from establishing the SWSWG to preparing the SAR.
Even after a system is placed in service, management of the SSS effort continues to address
modifications and enhancements to the software and the system. Often, changes in the use or
application of a system necessitate a re-assessment of the safety of the software in the new
application.

C Inputs N Outputs \\

¢ ORD/MENS Prima TaSk Input to SOW
Statement of Work ry Input to SOO

Statement of Objectives Input to RFP)
Request For Proposal SwSWG Memebership
Safety Policy Software Safety Charter

¢ Update to SSPP
Program Management « Update to Safety Program

Schedule
¢ Update to SEMP
¢ Update to TEMP

\) < ——————————— -\Input to SPRA Reviews)

Iterative Loop

Primary Sub-Tasks Critical Interfaces

¢ Establish and Manage SWSWG

¢ Update Safety Program Plans

¢ Safety Program Monitoring

¢ Provide, Udate, or Develop Presentations
¢ Provide Safety Management Inputs to

k Software Test Plans /
\, J

Figure 4-15: Software Safety Program Management

Program Management

System Safety Program Management
Customer Personnel

Supplier Personnel

4-21

Software System Safety Handbook

Software Safety Engineering

Effective management of the safety program is essential to the effective and efficient reduction of
system risk. This section discusses the managerial aspects of the software safety tasks and
provides guidance in establishing and managing an effective software safety program. Initiation
of the SSP is all that is required to begin the activities pertaining to software safety tasks. Initial
management efforts parallel portions of the planning process since many of the required efforts
(such as establishing a hazard tracking system or researching lessons learned) need to begin very
early in the safety program. Safety management pertaining to software generally ends with the
completion of the program and its associated testing; whether it is a single phase of the
development process (e.g., concept exploration) or continues through the development,
production, deployment, and maintenance phases. In the context of acquisition reform, this
means that management of the efforts must continue throughout the system life cycle. From a
practical standpoint, management efforts end when the last safety deliverable is completed and is
accepted by the customer. Management efforts then may revert to a “caretaker” status in which
the PFS or safety manager monitors the use of the system in the field and identifies potential
safety deficiencies based on user reports and accident/incident reports. Even if the developer has
no responsibility for the system after deployment, the safety program manager can develop a
valuable database of lessons learned for future systems by identifying these safety deficiencies.

Establishing a software safety program includes establishing a Software Safety Working Group
(SWSWG). This is normally a sub-group of the SSWG and chaired by the PFS or safety
manager. The SWSWG has overall responsibility for the following:

* Monitoring and control of the software safety program,

* Identifying and resolving hazards with software causal factors,
* Interfacing with the other IPTs, and

* Performing final safety assessment of the system design.

A detailed discussion of a SWSWG is found in the supplemental information of Appendix C,
paragraph C.5.2.

It is in this phase of the program that the Software Safety Plan of Action and Milestones
(POA&M) is developed based on the overall software development program POA&M in
coordination with the system safety POA&M. Milestones from the software development
POA&M, particularly design reviews and transition points (e.g., from unit code and test to
integration) determine the milestones required of the software safety program. The SwWSWG
must ensure that the necessary analyses are complete in time to provide the necessary input to
various development efforts to ensure effective integration of software safety into the overall
software development process. The overall Phases, Milestones and Processes Chart, discussed in
Paragraph 4.3 below, identifies the major program milestones from MIL-STD-498 and -499 with
the associated software safety program events.

One of the most difficult aspects of software safety program management is the identification and
allocation of resources required to adequately assess the safety of the software. In the early
planning phases, the configuration of the system and the degree of interaction of the software
with the potential hazards in the system are largely unknown. The higher the degree of software

4-22

Software System Safety Handbook

Software Safety Engineering

involvement, the greater the resources required to perform the assessment. To a large extent, the
software safety program manager can use the early analyses of the design, participation in the
functional allocation, and high-level software design process to ensure that the amount of safety-
critical software is minimized. If safety-critical functions are distributed throughout the system
and its related software, then the software safety program must encompass a much larger portion
of the software. However, if the safety-critical functions are associated with as few software
modules as practical, the level of effort may be significantly reduced.

Effective planning and integration of the software safety efforts into the other IPTs will
significantly reduce the software safety-related tasks that must be performed by the SSS Team.
Incorporating the generic SSRs into the plans developed by the other IPTs allows them to assume
responsibility for their assessment, performance, and/or evaluation. For example, if the SSS
Team provides the quality assurance generic SSRs to the Software Quality Assurance (SQA)
IPT, they will perform compliance assessments with requirements, not just for safety, but for all
aspects of the software engineering process. In addition, if the SQA IPT “buys-into” the software
safety program and its processes, it significantly supplements the efforts of the software safety
engineering team, reduces their workload, and avoids duplication of effort. The same is true of
the other IPTs such as CM and Software Test and Evaluation. In identifying and allocating
resources to the software safety program, the software safety program manager can perform
advance planning, establish necessary interfaces with the other IPTs, and identify individuals to
act as software safety representatives on those IPTs.

Identifying the number of analyses and the level of detail required to adequately assess the
software involves a number of processes. Experience with prior programs of a similar nature is
the most valuable resource that the software safety program manager has for this task. However,
every program development is different and involves different teams of people, PA requirements,
and design implementations. The process begins with the identification of the system-level
hazards in the PHL. This provides an initial idea of the concerns that must be assessed in the
overall safety program. From the system specification review process, the functional allocation
of requirements results in a high-level distribution of safety-critical functions and system-level
safety requirements to the design architecture. The safety-critical functions and requirements are
thus known in general terms. Software functions that have a high safety-criticality (e.g., warhead
arming and firing) will require a significant analysis effort that may include code-level analysis.
Safety’s early involvement in the design process can reduce the amount of software that requires
analysis; however, the software safety manager must still identify and allocate resources to
perform these tasks. Those safety requirements that conflict with others (e.g., reliability) require
trade-off studies to achieve a balance between desirable attributes.

The software control categories discussed in Paragraph 4.2.1.5 provide a useful tool for
identifying software that requires high levels of analysis and testing. Obviously, the more critical
the software, the higher the level of effort necessary to analyze, test, and assess the risk
associated with the software. In the planning activities, the SWSWG identifies the analyses
necessary to assess the safety of specific modules of code. The best teacher for determining the
level of effort required is experience. These essential analyses do not need to be performed by
the software engineering group and may be assigned to another group or person with the
specialized expertise necessary. The SwWSWG will have to provide the necessary safety-related

4-23

Software System Safety Handbook

Software Safety Engineering

guidance and training to the individuals performing the analysis, but only to the extent necessary
for them to accomplish the task.

One of the most important aspects of software safety program management is monitoring the
activities of the safety program throughout system development to ensure that tasks are on
schedule and within cost, and to identify potential problem areas that could impact the safety or
software development activities. The software safety manager must:

* Monitor the status and progress of the software and system development effort to ensure
that program schedule changes are reflected in the software safety program POA&M.

* Monitor the progress of the various IPTs and ensure that the safety interface to each is
working effectively. When problems are detected, either through feedback from the
software safety representative or other sources, the software safety manager must take the
necessary action to mitigate the problem.

* Monitor and receive updates regarding the status of analyses, open Hazard Action Report
(HAR), and other safety activities on a weekly basis. Significant HARs should be
discussed at each SWSWG meeting and the status updated as required. A key factor that
the software safety program manager must keep in mind is the tendency for many
software development efforts to begin compressing the test schedule as slippage occurs in
the software development schedule. He or she must ensure that the safety test program is
not compromised as a result of the slippage.

SPRA requirements vary with the PA and are often governed by PA directives. The contract will
generally identify the review requirements; however, it is the responsibility of the DA to ensure
that the software safety program incorporates the appropriate reviews into the SWSPP. The
system safety manager must identify the appropriate SPRA and review the schedule during the
development process. SPRA reviews generally involve significant effort outside of the other
software safety tasks. The DA must determine the level of effort required for each review and
the support that will be required during the review, and incorporate these into the SWSPP. For
complex systems, multiple reviews are generally required to update the SPRA and ensure that all
of the PA requirements are achieved.

Although SPRA requirements may vary from each PA, some require a technical data package
and briefing to a review board. The technical data package may be a SAR or may be
considerably more complex. The DA must determine whether they are to provide the technical
data package and briefing, or whether that activity is to be performed independently. In either
event, safety program personnel may be required to participate or attend the reviews to answer
specific technical questions that may arise. Normally, the presenters require several weeks of
preparation for the SPRA reviews. Preparation of the technical data package and supporting
documentation requires time and resources even though the data package is a draft or final
version of the SAR.

4-24

Software System Safety Handbook

Software Safety Engineering

4.3 Software Safety Task Implementation

This section of the Handbook describes the primary task implementation steps required for a
baseline SSS engineering program. It presents the necessary tasks required for the integration of
software safety activities into the functional areas of system and software development.
Remember, software systems safety (or software safety) is a subset of both the system safety
engineering process and the software engineering and development process.

As the Handbook introduces the software safety engineering process, it will identify the inputs to
the described tasks and the products that the specific process step produces. Each program and
engineering interface tied to software safety engineering must agree with the processes, tasks,
and products of the software safety program and must agree with the timing and scope of effort to
verify that it is in concert with the objectives and requirements of each interface. If other
program disciplines are not in agreement, or do not see the functional utility of the effort, they
will usually default to a “non-support” mode.

Figure 4-16 provides a graphical depiction of the software safety activities required for the
implementation of a credible SSS program. Remember that the process steps identified in this
Handbook represent a baseline program that has a historical lessons learned base and includes the
best practices from successful programs. As each procurement, software acquisition, or
development has the potential and probability to be uniquely diverse, the safety manager must
use this section as a guide only. Each of the following steps should be analyzed and assessed to
identify where minor changes are required or warranted for the software development program
proposed. If these tasks, with the implementation of minor changes, are incorporated in the
system acquisition life cycle, the SSS effort has a very high likelihood of success.

-

Software Safety
Task
Implementat‘i‘osn

Software Safety

System H d
Program e ystem Hazar

Analysi
Milestones, nalysis
4.3 .1 I I I I 4.3.8
Preliminary ailoring Generic| Preliminary Derive System Preliminary Detailed
Hazard List Safety-Critical Hazard Analysis Safety-Critical Software Design Software Design
Development Requirements Development Software Rqmts SSHA SSHA
4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7

Figure 4-16: Software Safety Task Implementation

The credibility of software safety engineering activities within the hardware and software
development project depends on the credibility of the individual(s) performing the managerial
and technical safety tasks. It also depends on the identification of a logical, practical, and cost
effective process that produces the safety products to meet the safety objectives of the program.
The primary safety products include hazard analyses, initial safety design requirements,
functionally derived safety design requirements (based on hazard causes), test requirements to
produce evidence for the elimination and/or control of the safety hazards, and the identification
of safety requirements pertaining to operations and support of the product. The managerial and
technical interfaces must agree that the software safety tasks defined in this section will provide

4-25

Software System Safety Handbook

Software Safety Engineering

the documented evidence for the resolution of identified hazards and failure modes in design,
manufacture (code in software), fabrication, test, deployment, and support activities. It must also
thoroughly define and communicate residual safety risk to program management at any point in
time during each phase of the development life cycle.

4.3.1 Software Safety Program Milestones

The planning and management of a successful software safety program is supplemented by the
safety engineering and management program schedule. The schedule should include near-term
and long-term events, milestones, and contractual deliverables. The schedule should also reflect
the system safety management and engineering tasks that are required for each life cycle phase of
the program and that are required to support DOD milestone decisions. Specific safety data to
support special safety boards or safety studies for compliance and certification purposes is also
crucial. Examples include FAA certification, US Navy Weapon System Explosives Safety
Review Board approval, Defense Nuclear Agency Nuclear Certification, and the U.S. Air Force
Non-Nuclear Munitions Safety Board approval. The PM must track each event, deliverable,
and/or milestone to ensure that safety analysis activities are timely in the development process to
help facilitate cost-effective and technically feasible design solutions. These activities ensure
that the SSS program will meet the desired safety specifications of program and system
development activities.

Planning for the SSP must include the allocation of resources to support the travel of safety
management and engineers. The contractual obligations of the SOW, in concert with the
processes stated in the program plans and the required support of program meetings, dictate the
scope of safety involvement. With the limited funds and resources of today’s programs, the
system safety manager must determine and prioritize the level of support allocated to program
meetings and reviews. Planning for the budgeted travel allocations for the safety function must
assess the number of meetings requiring support, the number of safety personnel required to
attend, and the physical location of the meetings. Likewise, budgets must include adequate funds
for support tools, such as database programs for hazard tracking and analysis tools. The resource
allocation activity becomes complicated if priorities are not established “up-front” with the
determination of meetings to support, tools required, and other programmatic activities. Once
priorities are established, safety management can alert program management to meetings that
cannot be supported due to budget constraints for the purpose of concurrence or the reallocation
of resources. Figure 4-17 provides an example milestone schedule for a software safety program.
It graphically depicts the relationship of safety-specific activities to the acquisition life cycles of
both system and software development.

Remember that each procurement is unique and will have subtle differences associated with
managerial and technical interfaces, timelines, processes and milestones. This schedule is an
example with specific activities and time relationship-based “typical” programs. Program
planning must integrate program-specific differences into the schedule and support the practical
assumptions and limitations of the program.

4-26

Software System Safety Handbook

Software Safety Engineering

<< "DODI 5000.2R >
MS 0 MS MS2 MS 3 MS 4
\v/ SP‘ZA V2 SP‘{A v SI?A SI?A SP‘{A v v SIgiA “@5
Phase 0 Phase 1 Phase 11 111 Phase IV
Exsg?:teig; & Demor:gsctratlon Engineering and Manufacturing Production &| Operations &
Definition Validation Development I? Deployment Support
Inter- Maintenance
. System . Hard\yare Prototyp§ Operability E Manufacturin; PIPs
Requirements & Design Design |Manufacturing \Y . .
Test A Technical Reviews
M[L‘I-;gTD_ A Software Requirements o | DD Cg‘é‘% ((;:SS(LjJ Systerp L | Copy Media Ob}izieos\j::rnce
SRR Analysis T| Integration & Distribution| Y
Test | Test Test System Upgrades
A A Configuration Management
SDR SSR
A A A Lifecycle
PDR CDR TRR Support Activity
[| |
1 1 1
A Software Safety Program Planning
Software Safety Program Management
1 1 1 1
| Preliminary Hazard List Development
ECP,
| Tailor the Generic Software Safety Requirements PTT]:{’
. — ; - PCR,
| : Prel]mmlary Hazlard AlnalySIS - (PHA) SCN,
R . . Analysis
Develop Safety Requirements Criteria Analysis
MIL- I Product Improvement Programs (PIPs)
STD Software Preliminary Design Subsy
882 Hazard Analysis - SSHA Safety Processes for Phase 4
Software Detailed Design Subsystem Are an Iteration of the Processes
Hazard Analysis SSHA Performed for Phases 0-3.
1
| System Hazard Analysis (SHA)
I I I I
| Software Safety Test Planning |
1
| Software Safety Testing & Analysis |
1 L
| Software Safety Assessment |
1 1

Verify Software Developed IAW Applicable Standards and Criteria |

A A

SRR SDR

A

TRR

A A A

SSR PDR CDR

Figure 4-17: Example POA&M Schedule

As described in Paragraph 4.2.2, the POA&M will also include the various safety reviews, PA
reviews, internal reviews, and the SWSWG meetings. The software safety assessment milestones
are generally geared to the SPRA reviews, since the technical data package required is in fact
either the draft or final software-related SAR. Hazard analysis schedules must reflect program
milestones where hazard analysis input is required. For example, SSRs resulting from generic
requirements tailoring (documented in the SRCA) must be available as early as practical in the
design process for integration into design, programmatic, and system safety documents. Specific
safety requirements from the PHA and an initial set of safety design requirements must be
available prior to the PDR for integration into the design documents. System safety and software
safety must participate in the system specification review and provide recommendations during

4-27

Software System Safety Handbook

Software Safety Engineering

the functional allocation of system requirements to hardware, software, operation, and
maintenance. After functional allocation is complete, the Software Engineering IPT, with the
help of the software safety representative, will develop the SRS. At this point, SSS should have
the preliminary software safety assessment complete with hazards identified and initial software-
related HRIs. The SWSWG updates the analyses as the system development progresses however,
the safety design requirements (hardware, software, and human interfaces) must be complete
prior to the CDR. Requirements added after the CDR can have a major impact on program
schedule and cost.

During the development of the SRS, the SSS Team initiates the SSHA and its evaluation of the
preliminary software design. This preliminary design analysis assesses the system and software
architecture, and provides design recommendations to reduce the associated risk. This analysis
provides the basis for input to the design of the Computer Software Configuration Items (CSClIs),
and the individual software modules. At this point the software safety engineer (SWSE) must
establish a SAF for each CSCI or Computer Software Unit (CSU), depending on the complexity
of the design to document the analysis results generated. As the design progresses and detailed
specifications are available, the SSS Team initiates a SSHA that assesses the detailed software
design. The team analyzes the design of each module containing safety-critical functions and the
software architecture in the context of hazard failure pathways and documents the results in the
SAF. For highly safety-critical software, the analysis will extend to the source code to ensure
that the intent of the SSRs is properly implemented.

The development of safety test requirements begins with the identification of SSRs. SSRs can be
either safety design requirements, generic or functional (derived) requirements, or requirements
generated from the implementation of hazard controls that will be discussed in Paragraph 4.3.5.
SSRs incorporated into software documentation automatically becomes a part of the software test
program. However, throughout the development, the software safety organization must ensure
that the test plans and procedures will provide the desired validation of SSRs demonstrating that
they meet the intent of the requirement. Section 4.4 provides additional guidance on the
development of the safety test program. Detailed inputs regarding specific safety tests are
derived from the hazard analyses, causal factor analysis, and the definition of software hazard
mitigation requirements. Safety-specific test requirements are provided to the test organization
for development of specific test procedures to validate the SSRs. The analysis associated with
this phase begins as soon as test data from the safety tests is available.

The SHA begins as soon as functional allocation of requirements occurs and continues through
the completion of system design. Specific milestones for the SHA include providing safety test
requirements for integration testing to the test organization and detailed test requirements for
interface testing. The latter will be required before testing of the software with other system
components begins.

4.3.1 Preliminary Hazard List Development

The PHL is a contractual deliverable on many programs and is described in Appendix C,
paragraph C.1.3. This list is the initial set of hazards associated with the system under
development. Development of the PHL requires knowledge of the physical and functional
requirements of the system and some foreknowledge of the conceptual system design. The

4-28

Software System Safety Handbook

Software Safety Engineering

documentation of the PHL helps to initiate the analyses that must be performed on the system,
subsystems, and their interfaces. The PHL is based upon the review of analyses of similar
systems, lessons learned, potential kinetic energies associated with the design, design handbooks,
and user and systems specifications. The generated list also aids in the development of initial (or
preliminary) requirements for the system designers and the identification of programmatic
(technical or managerial) risks to the program. Figure 4-18 illustrates the PHL development
process.

/ Inputs Outputs
(" (.

OCD/OR . Input to PHL
DOP Primary Task

Statement of Objectives
Design Standards
Generic Requirements
Hazard Lists

Lessons Learned

Draft PHL

Functional Allocations
Safety Inputs from
Domain Experts

¢ Input to TEMP
e Input to SEMP
¢ Input to SSHA
 Input to Draft CRLCMP
¢ Input to RHA/SRCA

Preliminary Hazard
: Initial SCFL

List Development Input to Trade Studies

Design Options

Domain Specific

Functional Hazards

Input to SPRA Reviews

Iterative Loop

Primary Sub-Tasks Critical Interfaces

Establish and Manage SWSWG

Update Safety Program Plans

Safety Program Monitoring

Provide, Update, or Develop Presentations
Determine Functional Hazards

* System Safety Working Group
¢ Software Safety Working Group
* Domain Engineers

Figure 4-18: Preliminary Hazard List Development

The development of the PHL is an integrated engineering task that requires cooperation and
communication between functional disciplines and among systems, safety, and design engineers.
The assessment and analysis of all preliminary and current data pertaining to the proposed system
accomplish this task. From a documentation perspective, the following should be available for
review:

* Preliminary system specification
e Preliminary product specification
» User requirements document

* Lessons learned

* Analysis of similar systems

* Prior safety analyses (if available)

* Design criteria and standards

4-29

Software System Safety Handbook

Software Safety Engineering

From the preceding list of documentation and functional specifications, system safety develops a
preliminary list of system hazards for further analysis. Although the identified hazards may
appear to be general or immature at this time, this is normal for the early phase of system
development. As the hazards are analyzed against system physical and functional requirements,
they will mature to become the hazards fully documented in the PHA, SSHA, SHA, and the
Operating and Support Hazard Analysis (O&SHA). A preliminary risk assessment of the PHL
hazards will help determine whether trade studies or design options must be considered to reduce
the potential for unacceptable or unnecessary safety risk in the design.

In addition to the information assessed from preliminary documents and databases, technical
discussions with systems engineering to help determine the ultimate functions associated with the
system that are safety-critical. Functions that should be assessed include manufacturing,
fabrication, operations, maintenance, and test. Other technical considerations include
transportation and handling, software/hardware interfaces, software/human interfaces,
hardware/human interfaces, environmental health and safety, explosive and other energetic
components, product loss prevention, as well as nuclear safety considerations.

This effort begins with the safety engineer analyzing the functionality of each segment of the
conceptual design. From the gross list of system functions, the analyst must determine the safety
ramifications of loss of function, interrupted function, incomplete function, function occurring
out of sequence, or function occurring inadvertently. This activity also provides for the initial
identification of safety-critical functions. The rationale for the identification of safety-critical
functions (list) of the system is addressed in the identification of safety deliverables (Appendix
C, Paragraph C.1.4). It should be reiterated at this point, that this is an activity that must be
performed as a part of the defined software safety process. This process step ensures that the
project manager, systems and design engineers, in addition to the software developers and
engineers are aware of each function of the design considered safety-critical or to have a safety
impact. It also ensures that each individual module of code that performs these functions is
officially labeled as “safety-critical” and that defined levels of design and code analysis and test
activity are mandated. An example of the possible safety-critical functions of a tactical aircraft is
provided in Figure 4-19.

There are two benefits to identifying the safety-critical functions of a system. First, the
identification assists the SSS Team in the categorization and prioritization of safety requirements
for the software architecture early in the design life cycle. If the software performs or influences
the safety-critical function(s), that module of code becomes safety-critical. This eliminates
emotional discussions on whether individual modules of code are designed and tested to specific
and extensive criteria. Second, it reduces the level of activity and resource allocations to
software code not identified as safety-critical. This benefit is cost avoidance.

At this phase of the program, specific ties from the PHL to the software design are quite
premature. Specific ties to the software are normally through hazard causal factors, which have
yet to be defined at this point in the development. However, there may be identified hazards
which have preliminary ties to safety-critical functions which in turn are functionally linked to
the preliminary software design architecture. If this is the case, this functional link should be
adequately documented in the safety analysis for further development and analysis. At the same
time, there are likely to be specific “generic” SSRs applicable to the system (see Appendix E).

4-30

Software System Safety Handbook

Software Safety Engineering

These requirements are available from multiple sources and must be specifically tailored to the
program as they apply to the system design architecture.

SAFETY-CRITICAL FUNCTIONS

** for example purposes only **

e Altitude Indication e Adequate Oxygen Supply to the Pilot
e Attitude Indication e Stores and/or Expendables Separation
e Air Speed Indication e Safe Gun and Missile Operation

e Engine Control ¢ Armament/Expendables for System

o Inflight Restart After Flameout Ground Operations

o Engine Monitor and Display e Emergency Canopy Removal

o Bleed Air Leak Detection e Emergency Egress

o Engine/APU Fire Detection e Ejection Capability

o Fuel Feed for Main Engines e Landing Gear Extension

o Fire Protection/Explosion Suppression e Ground Deceleration

o Flight Control - Level ITI Flying Qualities e Structure Capability to Withstand Flight

o Flight Control - Air Data Loads

o Flight Control - Pitot Heat e Freedom From Flutter

o Flight Control - Fuel System/CG Control e Stability in Pitch, Roll and Yaw
o Flight Control - Cooling ¢ Heading Indication

o Flight Control - Electrical e Fuel Quantity Indication

o Flight Control - Hydraulic Power e Fuel Shut-off to Engine and APU

¢ Canopy Defog e Engine Anti-Ice

e Caution and Warning Indications

Figure 4-19: An Example of Safety-Critical Functions

4.3.2 Tailoring Generic Safety-Critical Requirements

Figure 4-20 depicts the software engineering process for tailoring the generic safety-related
software requirement list. Generic SSRs are those design features, design constraints,
development processes, "best practices," coding standards and techniques, and other general
requirements that are levied on a system containing safety-critical software, regardless of the
functionality of the application. The requirements themselves are not safety specific (i.e., not
tied to a specific system hazard). In fact, they may just as easily be identified as reliability
requirements, good coding practices, and the like. They are, however, based on lessons learned
from previous systems where failures or errors occurred that either resulted in a mishap or a
potential mishap. The PHL, as described above, may help determine the disposition or
applicability of many individual generic requirements. The software safety analysis must identify
the applicable generic SSRs necessary to support the development of the SRS as well as
programmatic documents (e.g., SDP). A tailored list of these requirements should be provided to
the software developer for inclusion into the SRS and other documents.

Several individuals, agencies, and/or institutions have published lists of generic safety
requirements for consideration. To date, the most thorough is included in Appendix E, Generic
Requirements and Guidelines, which includes the STANAG 4404, NATO Standardization
Agreement, Safety Design Requirements and Guidelines for Munitions Related Safety-Critical
Computing Systems, the Mitre (Ada) list, and other language-specific requirements. These

4-31

Software System Safety Handbook

Software Safety Engineering

requirements should be assessed and prioritized according to the applicability to the development
effort. Whatever list is used, the analyst must assess each item individually for compliance, non-
compliance, or non-applicability. On a particular program, the agreed upon generic SSRs should
be included in the SRCA and appropriate high-level system specifications.

/ Inputs Outputs
4 (.

. Input to TEMP
Primary Task

¢ General Rqmts Doc.

¢ Design Standards

¢ Generic Safety-Critical
Software Rqmts Lists

¢ Lessons Learned

Similar Systems

Hazard Analyses

¢ Mishap Data

Input to SEMP

Input to PHL

e Input to PHA

¢ Input to SSHA

* Input to SDP

¢ Input to CRLCMP

* Input to SPRA Reviews

e Input to Software Test
Plans and Generic Test

Requirements

Tailoring The Generic
Safety-Critical Software
Requirements List

Iterative Loop

Primary Sub-Tasks Critical Interfaces

¢ Obtain Existing Generic Requirements
and Guidelines

¢ Determine Applicability of Requirements

to System Under Development

Generate Additional Generic Requirements

Rebiew Draft SDP, SEMP, TEMP

Obtain Evidence to Support Compliance

* System Safety Working Group
¢ Software Safety Working Group
* Software Quality Assurance

* Domain Engineers
* Test and Evaluation

Figure 4-20: Tailoring the Generic Safety Requirements

Figure 4-21 is an example of a worksheet form that may be used to track generic SSR
implementation. Whether the program is complying with the requirement, the physical location
of the requirement and the physical location of the evidence of implementation must be cited in
the EVIDENCE block. If the program is not complying with the requirement (e.g., too late in the
development to impose a safety kernel) or the requirement is not-applicable (e.g., an Ada
requirement when developing in assembly language), a statement of explanation must be
included in the RATIONALE block. An alternative mitigation of the source risk that the
requirement addresses should be described if applicable, possibly pointing to another generic
requirement on the list.

A caution regarding the “blanket” approach of establishing the entire list of guidelines or
requirements for a program: Each requirement will cost the program critical resources; people to
assess and implement; budget for the design, code, and testing activities; and program schedule.
Unnecessary requirements will impact these factors and result in a more costly product with little
or no benefit. Thus, these requirements should be assessed and prioritized according to the
applicability to the development effort. Inappropriate requirements, which have not been
adequately assessed, are unacceptable. The analyst must assess each requirement individually
and introduce only those that may apply to the development program.

Some requirements only necessitate a sampling of evidence to provide implementation (e.g., no
conditional GO-TO statements). The lead software developer will often be the appropriate

4-32

Software System Safety Handbook

Software Safety Engineering

individual to gather the implementation evidence of the generic SSRs from those who can
provide the evidence. The lead software developer may assign SQA, CM, V&V, human factors,
software designers, or systems designers to fill out individual worksheets. The entire tailored list
of completed forms should be approved by the SSE and submitted to the SDL and referred to by
the SAR. This provides evidence of generic SSR implementation

INTENDED
GENERIC SOFTWARE SAFETY REQUIREMENTS COMPLIANCE
IMPLEMENTATION

YES NO N/A

Item:
X

Coding Requirements Issues

Has an analysis (scaling, frequency response, time response,
discontinuity, initialization, etc.) of the macros been performed?

Rationale: (If NO or N/A, describe the rationale for the decision and resulting risk.)

There are no macros in the design (discussed at checklist review 1/11/96)

Evidence: (If YES, describe the kind of evidence that will be provided. Note: Specify sampling
percentage per SWSPP, if applicable.)

Action: (State the Functional area with responsibility.)

Software Development POC:

Figure 4-21: Example of a Generic Software Safety Requirements Tracking Worksheet

4.3.3 Preliminary Hazard Analysis Development

The PHA is a safety engineering and software safety engineering analysis performed to identify
and prioritize hazards and their casual factors in the system under development. Figure 4-22
depicts the safety engineering process for the PHA. There is nothing unique about the software
aspects other than the identification of the software causal factors. Many safety engineering texts
provide guidance for developing the PHA. This Handbook will not describe the processes for
brevity. Many techniques provide an effective means of identifying system hazards and the
determination of their causal factors.

A note of caution is that each methodology focuses on a process that will identify a substantial
portion of the hazards, however, none of the methodologies are complete. For example, the
Energy-Barrier trace analysis is an effective process, however, it may lead the analyst to neglect
certain energy control functions. In addition, in applying this technique, the analyst must
consider not only the obvious forms of energy (chemical, electrical, mechanical, etc.) but also
such energy forms as biological. Many analysts use the life cycle profile of a system as the basis

4-33

Software System Safety Handbook

Software Safety Engineering

for the hazard identification and analysis. Unless the analyst is particularly astute, he/she may
miss subtle system hazards and, more importantly, causal factors. Appendix B provides a list of
references that includes many texts describing the PHA.

/ Inputs Outputs
(a

Input to RHA/SRCA
: SOW/SOO/RFP Primary Task

. o Update PHA
* Risk Assessment Criteria * Input to S/W Design
e Draft SS, S/SDD

* Input to SDP
* Lessons Learned * Input to Preliminary S/W
¢ Similar Systems

Design Analysis
Hazard Analyses * Input to Trade Studies
¢ Mishap Data

. . ¢ Safety-specific S/W
« Life Cycle Environmental Design Requirements
Profile * Hazard Action Records
. PHL) ¢ Prioritized Hazard List
¢ Tailored Rqmts Lists

Preliminary Hazard
Analysis (PHA)

Iterative Loop
Primary Sub-Tasks

(. Identify System-Level Causal Factors

¢ Identify Software Level Causal Factors

¢ Apply HRI and Prioritize Hazards

e Apply Risk Assessment Criteria and
Categorize Hazards

¢ Link Hazard Causal Factors to Requirements

¢ Develop Design Recommendations

Critical Interfaces

* Software Safety Working Group
* Domain Engineers

Figure 4-22: Preliminary Hazard Analysis

The PHA becomes the springboard documentation to launch the SSHA and SHA analyses as the
design matures and progresses through the development life cycle. Preliminary hazards can be
eliminated (or officially closed through the SSWGQG) if they are deemed to be inappropriate for the
design. Remember that this analysis is preliminary and is used to provide early design
considerations that may or may not be derived or matured into design requirements.

Throughout this analysis, the PHA provides input to trade-off studies. Trade-off analyses
performed in the acquisition process are listed in Table 4-1 (DSMC, 1990). These analyses offer
alternative considerations for performance, producibility, testability, survivability, compatibility,
supportability, reliability, and system safety during each phase of the development life cycle.
System safety inputs to trade studies include the identification of potential or real safety
concerns, and the recommendations of credible alternatives that may meet all (or most) of the
requirements while reducing overall safety risk.

The entire unabridged list of potential hazards developed in the PHL is the entry point of PHA.
The list should be “scrubbed” for applicability and reasonability as the system design progresses.
The first step is to eliminate from the PHL any hazards not applicable to the system [e.g., if the
system uses a titanium penetrator vice a Depleted Uranium (DU) penetrator, eliminate the DU
related hazards]. The next step is to categorize and prioritize the remaining hazards according to
the (System) HRI. The categorization provides an initial assessment of system hazard severity
and probability of occurrence and, thus, the risk. The probability assessment at this point is
usually subjective and qualitative. After developing the prioritized list of preliminary hazards,

4-34

Software System Safety Handbook

Software Safety Engineering

the analysis proceeds with determining the hardware, software, and human interface causal

factors to the individual hazard as shown in Figure 4-23.

Table 4-1: Acquisition Process Trade-off Analyses

Acquisition Phase

Trade-Off Analysis Function

Mission Area Analysis

Prioritize Identified User Needs

Concept Exploration

Compare New Technologies With Proven Concepts
Select Concepts Best Meeting Mission Needs

Select Alternative System Configuration

Demonstration Validation

Select Technology

Reduce Alternative Configurations to a Testable Number

Full Scale Development

Select Component/Part Designs
Select Test Methods

Select Operational Test & Evaluation Quantities

Production

Examine Effectiveness of all Proposed Design Changes

Perform Make-Or-Buy, Process, Rate, and Location Decisions

After the prioritized list of preliminary hazards is determined, the analysis proceeds with
determining the hardware, software, and human interface causal factors to the individual hazard

as shown in Figure 4-23.

Inadvertent
Stores Release

H/W

S/W

H/F

Faulty
Latch

Erroneous Timing
Algorithm

Premature Switch
Depression

Figure 4-23: Hazard Analysis Segment

This differentiation of causes assists in the separation and derivation of specific design
requirements for implementation in software. For example, as the analysis progresses, the
analyst may determine that software or hardware could subsequently contribute to a hardware
casual factor. A hardware component failure may cause the software to react in an undesired
manner leading to a hardware-influenced software causal factor. The analyst must consider all

paths to ensure coverage of the software safety analysis.

Although this tree diagram can represent the entire system, software safety is particularly
concerned with the software causal factors linked to individual hazards in addition to ensuring
that the mitigation of each causal factor is traced from requirements to design and code, and

4-35

Software System Safety Handbook

Software Safety Engineering

subsequently tested. These preliminary analyses and subsequent system and software safety
analyses identify when software is a potential cause, or contributor to a hazard, or will be used to
support the control of a hazard.

At this point, tradeoffs evolve. It should become apparent at this time whether hardware,
software, or human training best mitigates the first-level causal factors of the PHL item (the root
event that is undesirable). This causal factor analysis provides insight into the best functional
allocation within software design architecture. It should be noted that requirements designed to
mitigate the hazard causal factors do not have to be one-to-one, i.e., one software causal factor
does not yield one software control requirement. Safety requirements can be one-to-one, one-to-
many, or many-to-one in terms of controlling hazard causal factors to acceptable levels of safety
risk. In many instances, designers can use software to compensate for hardware design
deficiencies or where hardware alternatives are impractical. As software is considered to be
cheaper to change than hardware, software design requirements may be designed to control
specific hardware causal factors. In other instances, one design requirement (hardware or
software) may eliminate or control numerous hazard causal factors (e.g., some generic
requirements). This is extremely important to understand as it illuminates the importance of not
accomplishing hardware safety analysis and software safety analysis separately. A system-
level, or subsystem-level hazard can be caused by a single causal factor or a combination of
many causal factors. The safety analyst must consider all aspects of what causes the hazard and
what will be required to eliminate or control the hazard. Hardware, software, and human factors
can usually not be segregated from the hazard and cannot be analyzed separately. The analysis
performed at this level is integrated into the trade-off studies to allow programmatic and
technical risks associated with various system architectures to be determined.

Both software-initiated causes and human error causes influenced by software input must be
adequately communicated to the digital systems engineers and software engineers to identify
software design requirements that preclude the initiation of the root hazard identified in the
analysis. The software development team may have already been introduced to the applicable
generic SSRs. These requirements must address how the system will react safely to operator
errors, component failures, functional software faults, hardware/software interface failures, and
data transfer errors. As detailed design progresses, however, functionally derived software
requirements will be defined and matured to specifically address causal factors and failure
pathways to a hazardous condition or event. Communication with the software design team is
paramount to ensure adequate coverage in preliminary design, detailed design, and testing.

If a PHL is executed on a system that has progressed past the requirements phase, a list or a tree
of identified software safety-critical functions becomes helpful to flesh out the fault tree, or the
tool used to represent the hazards and their causal factors. In fact, the fault tree method is one of
the most useful tools in the identification of specific causal factors in both the hardware and
software domains.

During the PHA activities, the link from the software casual factors to the system-level
requirements must be established. If there are causal factors that, when inverted descriptively,
cannot be linked to a requirement, they must be reported back to the SSWG for additional
consideration as well as development and incorporation of additional requirements or
implementations into the system-level specifications.

4-36

Software System Safety Handbook

Software Safety Engineering

The hazards are formally documented in a hazard tracking database record system. They include
information regarding the description of the hazard, casual factors, the effects of the hazard
(possible mishaps) and the preliminary design considerations for hazard control. Controlling
causal factors reduces the probability of occurrence of the hazard. Performing the analysis
includes assessing hazardous components, safety-related interfaces between subsystems,
environmental constraints, operation, test and support activities, emergency procedures, test and
support facilities, and safety-related equipment and safeguards. A suggested PHA format (Figure
4-24) is defined by the CDRL and can be included in the Hazard Tracking database. This is only
a summary of the analytical evidence that needs to be progressively included in the SDL to
support the final safety and residual risk assessment in the SAR.

/ HAZARD CONTROL RECORD

PAGE 1

Initiation Date: Analysis Phase:

Causes

Hazard Cause: /
Hardware

Software

Subsystem:
i ’ Root Hazard

Human Error

Software-Influenced Human Error

Hazard Effect:

Hazard Control Considerations:

o

The PHA becomes the input document and information source for all other hazard analyses
performed on the system including the SSHA, SHA, and the O&SHA.

Figure 4-24: Example of a Preliminary Hazard Analysis

4.3.4 Derive System Safety-Critical Software Requirements

Safety-critical SSRs are derived from known safety-critical functions, tailored generic SSRs, and
hazard causal factors determined from previous activities. Figure 4-25 identifies the software
safety engineering process for developing the SRCA.

4-37

Software System Safety Handbook

Software Safety Engineering

(Inputs
(

* Draft SS, S/SDD

Draft SDP/SQAP/QAPP

¢ Draft PHA

Draft CRLCMP

¢ Tailored Generic Safety
Specific Requirements
List

Primary Task

Develop Software
Requirements
Criteria Analysis

Outputs

K Input to RHA/SRCA
Safety-Specific Require-
ments List

¢ Input to SS, S/SDD
Input to TEMP

* Input to OOD Process
Input to SPrA Reviews

e Input to Reliability,

¢ Initial Safety-Critical

> L Availability, and
Function (SCF) List

Maintainability Plans
* Input to CRLCMP
SCF List

Iterative Loop

Primary Sub-Tasks Critical Interfaces

¢ Develop Safety Design Requirements
Design Requirements Tied to Causal Links
Recommend Design Restrictions/Limits

¢ Identify Safety-Critical S/W Functions

Software Safety Working Group
* Domain Engineers
Software Quality Assurance
Software V&V, T&E, and CM
¢ Maintainability

Identify Causal Links to Software
Perform Path Analysis

Identify Influences to Safety-Critical Path
Allocate SCF's to Identified Hazards

Figure 4-25: Derive Safety-Specific Software Requirements

Safety requirement specifications identify the specifics and the decisions made, based upon the
level of safety risk, desired level of safety assurance, and the visibility of software safety within
the developer organization. Methods for doing so are dependent upon the quality, breadth, and
depth of initial hazard and failure mode analyses and on lessons learned and/or derived from
similar systems. As stated previously, the generic list of requirements and guidelines establishes
the starting point, which initiates the system-specific SSR identification process. Identification
of system-specific software requirements is the direct result of a complete hazard analysis
methodology (see Figure 4-26).

SSRs are derived from four sources: generic lists, analysis of the system functionality (safety
design requirements), from the causal factor analysis, and from implementation of hazard
controls. The analysis of system functionality identifies those functions in the system that, if not
properly executed, can result in an identified system hazard. Therefore, the correct operation of
the function related to the safety design requirements is critical to the safety of the system making
them safety-critical as well. The software causal factor analysis identifies lower-level design
requirements that, based on their relationship to safety-critical functions, or the context of the
failure pathway of the hazard make them safety-related as well. Finally, design requirements
developed to mitigate other system-level hazards (e.g., monitors on safety-critical functions in
the hardware) are also SSRs.

The SWSE must present the SSRs to the customer via the SWSWG for concurrence with the
assessment as to whether they eliminate or resolve the hazardous condition to acceptable levels
of safety risk prior to their implementation. For most SSRs, there must be a direct link between
the requirement and a system-level hazard. The following paragraphs provide additional
guidance on developing SSRs other than the generics.

4-38

Software System Safety Handbook

Software Safety Engineering

Software Safety Requirements (SSRs) Derivation for

Safety-Critical Software Systems

Develop Generic Safety Critical Derive Functional Safety-
Software Guidelines & Requirements Critical Requirements

PRELIMINARY HAZARD LIST (PHL)
= Obtain Generic Software Safety Requirements Lists

= Develop Safety-Critical Functions List

= Tailor Generic Software Safety Requirement and

= Develop Potential Functional H d List
Guidelines List for the Specific System and/or cvelop Fotenfial Functional Hazard Ls

Subsystem
—» PRELIMINARY HAZARD ANALYSIS (PHA) <€
= Categorize and Prioritize Generic Software = Categorize and Prioritize System Functional Hazards
Requirements and Guidelines = Determine System Level HW/SW and HF Causal Factor]

= Execute System Level Trade Study

= Analyze and Identify All Software Specific Causal
Factors

= Execute Detail Design Trade Study

SAFETY REQUIREMENTS CRITERIA ANALYSIS (SRCA)
Derive System-Specific SSRs

SUBSYSTEM (SSHA) & SYSTEM (SHA) HAZARD ANALYSIS
Verify and Trace SSRs Through Either Test, Analysis or Both

= Tag Safety-Critical Software Requirements

= Establish Methods for Tracing Software Safety Requirements to Test

= Provide Evidence for Each Functional Hazard Mitigated by Comparing to Requirements
=Implement Software Safety Requirements into Design and Code N
= Provide Evidence of Each Functional Hazard Mitigated by Comparing to Design
= Verify Safety Requirement Implementation Through Test

= Execute Residual Risk Assessment

= Verify Software Developed in Accordance with Applicable Standards and Criteria

SOFTWARE SAFETY ASSESSMENT REPORT (SAR)

Figure 4-26: Software Safety Requirements Derivation

4.3.4.1 Preliminary Software Safety Requirements

The initial attempt to identify system-specific SSRs evolves from the PHA performed in the early
phase of the development program. As previously discussed, the PHL/PHA hazards are a
product of the information reviewed pertaining to systems specifications, lessons learned,
analyses from similar systems, common sense, and preliminary design activities. The analyst ties
the identified hazards to functions in the system (e.g., inadvertent rocket motor ignition to the
ARM and FIRE functions in the system software). The analyst flags these functions and their
associated design requirements as safety-critical and enters them into the RTM within the SRCA.
The analyst should develop or ensure that the system documentation contains appropriate safety
requirements for these safety-critical functions (e.g., ensure that all safety interlocks are satisfied
prior to issuing the ARM command or the FIRE command). Lower levels of the specification
will include specific safety interlock requirements satisfying these preliminary SSRs. These
types of requirements are safety design requirements.

The safety engineer also analyzes the hazards identified in the PHA to determine the potential
contribution by the software. For example, a system design requires the operator to actually
commit a missile to launch, however, the software provides the operator a recommendation to
fire the missile. This software is also safety-critical and must be designated as such and included
in the RTM. Other safety-critical interactions may not be as obvious and will require more in-
depth analysis of the system design. The analyst must also analyze the hazards identified in the

4-39

Software System Safety Handbook

Software Safety Engineering

PHA and develop preliminary design considerations to mitigate other hazards in the system.
Many of these design considerations will include software thus making that software safety-
critical as well. During the early design phases, the safety analyst identifies these requirements to
design engineering for consideration and inclusion. This is the beginning of the identification of
the functionally derived SSRs.

These design considerations, along with the generic SSRs, represent the preliminary SSRs of the
system, subsystems, and their interfaces (if known). These preliminary SSRs must be accurately
defined in the hazard tracking database for extraction when reporting the requirements to the
design engineering team.

4.3.4.2 Matured Software Safety Requirements

As the system and subsystem designs mature, the requirements unique to each subsystem also
mature via the SSHA. The safety engineer, during this phase of the program, attends design
reviews and meetings with the subsystem designers to accurately define the subsystem hazards.
The safety engineer documents the identified hazards in the hazard tracking database and
identifies and analyzes the hazard “causes.” When using fault trees as the functional hazard
analysis methodology, the causal factors leading to the root hazard determine the derived safety-
critical functional requirements. It is at this point in the design that preliminary design
considerations are either formalized and defined into specific requirements, or eliminated if they
no longer apply with the current design concepts. The SSRs mature through analysis of the
design architecture to connect the root hazard to the causal factors. The analyst continues the
causal factors’ analysis to the lowest level necessary for ease of mitigation (Figure 4-27).

..................... ™

Root Analysis

1 | Hazard Analysis
Human Failure Modes
Error Interfaces

Hardware

In-Depth Analysis

Algorithm Algorithm

x CSU to SRS Requirements

‘ Algorithms

Calculations
Sequence Timing

Input From Calculation
Interfacing Error
Subsystem | ISl 00 sr s s s s sssssdsEaaEEeas

Figure 4-27: In-Depth Hazard Cause Analysis

This helps mature the functional analysis started during preliminary SSR identification. The
deeper into the design that the analysis progresses, the more simplistic (usually) and cost
effective the mitigation requirements tend to become. Additional SSRs may also be derived from
the implementation of hazard controls (i.e., monitor functions, alerts to hazardous conditions

4-40

Software System Safety Handbook

Software Safety Engineering

outside of software, unsafe system states, etc.). The PHA phase of the program should define
causes to at least the CSCI level, whereas the SSHA and SHA should analyze the causes to the
algorithm level for areas designated as safety-critical.

4.3.4.3 The subsystem analysis begins during concept exploration and continues
through the detailed design and CDR. The safety analyst must ensure that the safety
analyses keep pace with the design. As the design team makes design decisions and
defines implementations, the safety analyst must reevaluate and update the affected
hazard records.Documenting Software Safety Requirements

The SRCA should document all identified SSRs. The objective of the SRCA is to ensure that the
intent of the SSRs in the system software is met and that the SSRs eliminate, mitigate, and/or
control the identified causal factors. Mitigating and/or controlling the causal factors reduces the
probability of occurrence of the hazards identified in the PHA. The SRCA also provides the
means for the safety engineer to trace each SSR from the system level specification, to the design
specifications, to individual test procedures and test results’ analysis. The safety engineer uses
this traceability, known as a RTM, to verify that all SSRs can be traced from system level
specifications to design to test. The safety engineer should also identify all safety-critical SSRs
to distinguish them from safety-significant SSRs in the RTM. Safety-critical SSRs are those that
directly influence a safety-critical function (software control categories 1 and 2), while safety-
significant SSRs are those that indirectly influence safety-critical functions. In terms of the
Nuclear Safety Analysis process, these are first- and second-level interfaces, respectively. The
RTM provides a useful tool to the software development group. They will be immediately aware
of the safety-critical and safety-significant functions and requirements in the system. This will
also alert them when making modifications to safety-critical CSCIs and CSUs that may impact
SSRs. The SRCA is a “living” document that the analyst constantly updates throughout the
system development.

4.3.4.4 Software Analysis Folders

At this stage of the analysis process, it is also a good practice to start the development of SAFs.
The purpose of a SAF is to serve as a repository for all of the analysis data generated on a
particular CSCI by the safety engineer. SAFs should be developed on a CSCI basis and should
be made available to the entire SSS Team during the software analysis process. Items to be
included within the SAFs include, but are not limited to:

* Purpose and functionality of the CSCI, source code listings annotated by the safety
engineer,

» Safety-Critical Functions (SCF) and SSRs pertaining to the CSCI under analysis, SSR
traceability results,

e Test procedures and test results pertaining to the CSCI,

* Record and disposition of all Program Trouble Reports (PTR)/Software Trouble Reports
(STR) generated against the particular CSCI, and

4-41

Software System Safety Handbook

Software Safety Engineering

* A record of any and all changes made to the CSCI. SAFs need to be continually updated
during the preliminary and detailed design SSHA phases.

4.3.5 Preliminary Software Design, Subsystem Hazard Analysis

The identification of subsystem and system hazards and failure modes inherent in the system
under development (Figure 4-28) is essential to the success of a credible software safety program.
Today, the primary method of reducing the safety risk associated with software performing
safety-critical or significant functions is to first identify the system hazards and failure modes,
and then determine which hazards and failure modes are caused or influenced by software or lack
of software. This determination includes scenarios where information produced by software
could potentially influence the operator into a wrong decision resulting in a hazardous condition
(design-induced human error). Moving from hazards to software causal factors and consequently
design requirements to eliminate or control the hazard is very practical, logical, and adds utility
to the software development process. It can also be performed in a more timely manner as much
of the analysis is accomplished to influence preliminary design activities.

Inputs Outputs

ﬁ SSHA of Top Level

PHL Primary Task Software Design
grag EEQ/SRCA * PHA Update

e imi « RHA/SRCA Updat
Draft SHA Preliminary / pdate

* Input to SPRA Review
¢ Updates to SS, S/SDD
¢ Updates to SRS, IRS

¢ Updates to SDD & IDD
¢ Hazard Action Reports
* Inputs to Test Plans
Inputs to CRLCMP

Software Design
SubSystem Hazard
Analysis (SSHA)

SS, S/SDD, SRS, IRS
Draft SDD

Draft IDD

Draft CRLCMP

Iterative Loop

Primary Sub-Tasks Critical Interfaces

¢ Link Hazard Causal Factors to Actual Design

* Trace Top Level Safety Requirements to
Actual Software Design

* Analyze Software Hierarchy

¢ Analyze Software Architecture

* Analyze Design of CSCI’s

¢ Software Safety Working Group
* Domain Engineers

Figure 4-28: Preliminary Software Design Analysis

The specifics of how to perform the SSHA or SHA are briefly described in Appendix C,
Paragraphs C.1.6 and C.1.7. MIL-STD-882C, Tasks 204 and 205 and other reference texts in
Appendix B provide a more complete description of the processes. The fundamental basis and
foundation of a SSP is a systematic and complete hazard analysis process.

One of the most helpful steps within a credible software safety program is to categorize the
specific causes of the hazards and software inputs in each of the analyses (PHA, SSHA, SHA,
and O&SHA). Hazard causes can be those caused by hardware (or hardware components),
software inputs (or lack of software input), human error, software-influenced human error, or

4-42

Software System Safety Handbook

Software Safety Engineering

hardware or human errors propagating through the software. Hazards may result from one
specific cause or any combination of causes. As an example, “loss of thrust” on an aircraft may
have causal factors in all four categories. Examples are as follows:

Hardware: foreign object ingestion,
Software: software commands engine shutdown in the wrong operational scenario,
Human error: pilot inadvertently commands engine shutdown, and

Software-influenced pilot error: computer provides incorrect information insufficient or
incomplete data to the pilot causing the pilot to execute a shutdown.

Whatever the cause, the safety engineer must identify and define hazard control considerations
(PHA phase) and requirements (SSHA, SHA, and O&SHA phases) for the design and
development engineers. He/she communicates hardware-related causes to the appropriate
hardware design engineers, software-related causes to the software development and design
team, and human error-related causes to the Human Factors organization or to hardware and/or
software design team. He/she must also report all requirements, along with supporting rationale,
to the systems engineering team for their evaluation, tracking, and/or disposition.

The preliminary software design SSHA begins upon the identification of the software subsystem
and uses the derived system-specific SSRs. The purpose is to analyze the system and software
architecture and preliminary CSCI design. At this point, the analyst has identified (or should
have identified) all SSRs (i.e., safety design requirements, generics, and functional derived
requirements and hazard control requirements) and begins allocating them to the identified
safety-critical functions and tracing them to the design.

The allocation of the SSRs to the identified hazards can be accomplished through the
development of SSR verification trees (Figure 4-29) which links safety-critical and safety-
significant SSRs to each SCF. The SCFs in turn are already identified and linked to each hazard.
Therefore, by ensuring that the SCF has been safely implemented the hazard will be controlled.
The tree allows the SWSE to verify that controls have been designed into the system to eliminate
or control/mitigate the SCF. The root node of the tree represents one SCF. The safety analyst
needs to develop a verification tree for each system-level SCF. The second level nodes are the
safety-critical SSRs linked to each system-level SCF. The third-, fourth-, and lower level nodes
represent the safety-critical and/or safety-significant SSRs allocated to each SCF. The fourth-
and fifth-level nodes are developed as required to fulfill the level of detail required by the SSS
Team. By verifying the nodes through analysis and/or testing, the safety analyst essentially
verifies the correct design implementation of the requirements. The choice of analysis and/or
testing to verify that the SSRs is up to the individual safety engineer whose decision is based on
the criticality of the requirement to the overall safety of the system and the nature of the SSR.

4-43

Software System Safety Handbook
Software Safety Engineering

Second Level Second Level Second Level
Verification Verification Verification
Node Node Node

Third Level Third Level Third Level Third Level

Verification Verification Verification Verification
Node Node Node Node

Fourth Level Fourth Level Fourth Level Fourth Level
Verification Verification Verification Verification
Node Node Node Node

Figure 4-29: Software Safety Requirements Verification Tree

Whenever possible, the safety engineer should use testing for verification. He/she can develop
an SSR Verification Matrix, similar to Table 4-2, to track the verification of each SSR or directly
document the verification in the RTM. The choice is largely dependent on the size and
complexity of the system. The SSR matrix, if developed, should be included as an appendix to
the SRCA; and the data should feed directly into the RTM. The safety analyst should also update
the hazard tracking database and SAFs with the analysis and test results once the verification is
complete.

Table 4-2: Example of a Software Safety Requirements Verification Matrix

1 Test: (TP4-1 & TP72-1) 7/14/97 Test Passed. Test Data found on
Analysis: (CSCI/CSU Name) Data Extract lomega Jaz Disk #10
1.2 Test: (TP2-2) 9/1/97 Test Failed: STR/PTR JDB002
generated & submitted to design team
1.3 Analysis: (CSCI/CSU Name) 9/23/97 Analysis of CSCI/CSU (Name)
indicated successful implementation
of the algorithm identified by SSR 1.3

The next step of the preliminary design analysis is to trace the identified SSRs and causal factors
to the design (to the actual CSCIs and CSUs). The RTM is the easiest tool to accomplish this
task (see Table 4-3). Other methods of preliminary design hazard analysis include Module
Safety-Criticality Analysis and Program Structure Analysis, which are discussed below.

4-44

Software System Safety Handbook

Software Safety Engineering

Table 4-3: Example of a RTM

SSR Requirement CSCI CSU Test Test
Description Procedure Results

4.3.5.1 Module Safety-Criticality Analysis

The purpose of module (CSCI or CSU) safety-criticality analysis is to determine which CSCIs or
CSUs are safety-critical to the system in order to assist the safety engineer in prioritizing the
level of analysis to be performed on each module. The safety analyst bases the priority on the
degree at which each CSCI or CSU implements a specific safety-critical function. The analyst
should develop a matrix (example in Table 4-4) to illustrate the relationship each CSCI or CSU
has with the safety-critical functions. The matrix should include all CSCIs and CSUs required to
perform a safety-critical function, such as math library routines which perform calculations on
safety-critical data items. The criticality matrix should list each routine and indicate which
safety-critical functions are implemented. Symbols could be used to note the importance with
respect to accomplishing a safety-critical function.

Table 4-4: Safety-critical Function Matrix

Safety-Critical Functions
CSCI/CSU 1 2 3 4 5 6 Rating
Name
INIT M M M M
SIGNAL H M H
DI1HZ H H
CLEAR H H H
BYTE N
H - High: The CSCI or CSU is directly involved with a critical factor
M - Medium: The CSCI or CSU is indirectly involved or subordinate to a critical factor
N - None: The CSCI or CSU does not impact a safety-critical function.

The last column in the matrix is the overall criticality rating of the CSCI or CSU. The analyst
should place an “H,” “M,” or “N” in this column based on the highest level of criticality for that
routine. However, if a CSCI or CSU has a medium criticality over a number of SCFs, the
cumulative rating may increase to the next level.

4.3.5.2 Program Structure Analysis

The purpose of program structure analysis is to reconstruct the program hierarchy (architecture)
and overlay structure, and to determine if any safety related errors or concerns exist in the
structure. The program hierarchy should be reconstructed on a CSCI level in the form of a
control tree. The SSE begins by identifying the highest CSU and its call to other CSUs. He/she

4-45

Software System Safety Handbook

Software Safety Engineering

performs this process for each level of CSUs. When this control flow is complete, the safety
engineer identifies recursive calls, extraneous CSUs, inappropriate levels of calls, discrepancies
within the design, calls to system and library CSUs, calls to other CSClIs, overlays, or CSUs not
called. CSUs called by more than one name, and units with more than one entry point are also
identified. Figure 4-30 provides an example hierarchy tree.

4)

| | | I |

System _ Math
[Utility-1][Csu-1] [Overlay-1] [Library

ES TN N
. /

Figure 4-30: Hierarchy Tree Example

All overlays should be identified. After identification, the following issues should be considered.

* Overlaying is not performed unnecessarily (An overlay should not just load another
overlay).

e Safety-critical code should not be in overlays.

* All overlay loads should be verified and proper actions taken if an overlay cannot be
loaded. (In some cases, the system will halt; while in others, some recovery is sufficient,
depending on the criticality and impact of the failure.)

* The effect that the overlays structure has on the time-critical code.
* Interrupts are enabled when an overlay is loaded.

* A review of which overlays are loaded all the time, to determine if they should be made
into resident code to cut down on system overhead.

* Overlays comply with the guidelines of STANAG 4404.

4.3.5.3 Traceability Analysis

The analyst develops and analyzes the RTM to identify where the SSRs are implemented in the
code, SSRs that are not being implemented, and code that does not fulfill the intent of the SSRs.
The traced SSRs should not just be those identified by the top-level specifications, but those
SSRs identified by the SRS, Software Design Document (SDD), and Interface Control Document
(ICD)/Interface Design Specification (IDS). This trace provides the basis for the analysis and

4-46

Software System Safety Handbook

Software Safety Engineering

test planning by identifying the SSRs associated with all of the code. This analysis also ties in
nicely with the SRCA (see Paragraph 4.3.5), which not only traces SSRs from specifications to
design and test but also identifies what is safety-critical and what is not.

Tracing encompasses two distinct activities: a requirement-to-code trace and a code-to-
requirement trace. The forward trace, requirement-to-code, first identifies the requirements that
belong to the functional area (if they are not already identified through requirement analysis).
The forward trace then locates the code implementation for each requirement. A requirement
may be implemented in more than one place thus making the matrix format very useful.

The backward trace, code-to-requirement, is performed by identifying the code that does not
support a requirement or a necessary “housekeeping” function. In other words, the code is
extraneous (e.g., “debugging” code left over from the software development process). The safety
analyst performs this trace through an audit of the applicable code after he/she has a good
understanding of the corresponding requirements and system processing. Code that is not
traceable should be documented and eliminated if practical. The following items should be
documented for this activity:

* Requirement-to-code trace,

e Unit(s) [code] implementing each requirement,

* Requirements that are not implemented,

e Requirements that are incompletely implemented,
e Code-to-requirement trace, and

e Unit(s) [code] that are not directly or indirectly traceable to requirements or necessary
“housekeeping” functions.

4.3.6 Detailed Software Design, Subsystem Hazard Analysis

Detailed design level analysis (Figure 4-31) follows the preliminary design process where the
SSRs were traced to the CSCI level and is initiated after the completion of the PDR. Prior to
performing this process, the safety engineer should have completed the development of the fault
trees for all of the top-level hazards, identifying all of the potential causal factors and deriving
generic and functional SSRs for each causal factor.

This section will provide the necessary guidance to perform a Detailed Design Analysis (DDA)
at the software architecture level. It is during this process that the SSE works closely with the
software developer, and IV&V engineers to ensure that the SSRs have been implemented as
intended, and to ensure that their implementation has not introduced any other potential safety
concerns.

4-47

Software System Safety Handbook

Software Safety Engineering

/ Inputs Outputs
(SUPPLIER

f ¢ Inputs to SHA

* Draft SHA P 3 * Inputs to SDD & IDD
rimary Task Pu
* SS, S/SDD, SRS, IRS, * Inputs to Test Procedures
IDS, and SDD

* Inputs to SPRA Reviews

* Inputs to Software Design

based upon:

- Global & Local Variable
Descriptions

- Hierarchy Charts

- Software Fault Trees

- CSCI Descriptions

- Process Flow Charts

Detailed
Software Design
SubSystem Hazard
Analysis (SSHA)

¢ Preliminary S/W SSHA

Later Iterations

¢ Schematics (firmware)

¢ Source Code w/Docs

¢ Data & Functional Flows

¢ Safety Test Results from
Unit Tests

e System Hazard Analysis

Iterative Loop

Primary Sub-Tasks Critical Interfaces

(. Link Hazard Causal Factors to Actual Code

¢ Analyze Final Implementation of Safety
Requirements

¢ Perform “What-If” Type Analysis

« Safety-Critical Path Analysis

« Identify Hazards Related to Interfacing

Subsystems

* Software Safety Working Group
* Domain Engineers
» Test & Evaluation

Figure 4-31: Detailed Software Design Analysis

4.3.6.1 Participate in Software Design Maturation

DDA provides the SSS engineer and the software development experts an opportunity to analyze
the implementation of the SSRs at the CSU level. DDA takes the SWSE from the CSCI level
determined from the preliminary design analysis one step further into the computer software
architecture. As the software development process progresses from preliminary design to
detailed design and code, it is the responsibility of the safety engineer to communicate the SSRs
to the appropriate engineers and programmers of the software development team. In addition, the
safety engineer must monitor the software design process to ensure that the software engineers
are implementing the requirements into the architectural design concepts. This can only be
accomplished by interactive communication between safety engineering and software
engineering. It is essential that the software developer and the SWSE work together in the
analysis and verification of the SSRs. In today’s software environment, the SWSE cannot be
expected to be an expert in all computer languages and architectures. Software design reviews,
code walkthroughs, and technical interchange meetings will help to provide a conduit of
information flow for the “wellness” assessment of the software development program from a
safety perspective. “Wellness” in this situation would include how well the software
design/programming team understands the system hazards and failure modes attributed to
software inputs or influences. It also includes their willingness to assist in the derivation of
safety-specific requirements, their ability to implement the requirements, and their ability to
derive test cases and scenarios to verify the resolution of the safety hazard. Most programs today
are resource limited. This includes most support functions and disciplines to include system
safety engineering. If this is the case, there will not be sufficient time in the day, week, or
program for the safety team to attend each and every design meeting. It is the responsibility of
the safety manager to prioritize those meetings and reviews which have the most “value added”

4-48

Software System Safety Handbook

Software Safety Engineering

input to the safety resolution function. This is very dependent on the amount of communication
and trust between disciplines, and among team members.

It is important to remember that there is a link between the SSRs and causal factors identified by
the FTA during the PHA phase of the software safety process. There are three methods of
verifying SSRs: analysis, testing, or both as illustrated in Figure 4-32. Recommended
approaches and techniques for analysis will be discussed in the subsequent paragraphs, while
approaches for SSR verification through testing will be discussed in Subsection 4.4.

/

—» Analysis

¢

Test & Analysis

T

\ —>»> Test /

Figure 4-32: Verification Methods

4.3.6.2 Detailed Design Software Safety Analysis

One of the primary analyses performed during DDA is to identify the CSU where an SSR is
implemented. The term CSU refers to the code-level routine, function, or module. The best way
to accomplish this task is for the SWSE to sit down with the software developer, IV&V engineer,
or QA engineer and to begin to tag/link individual SSRs to CSUs, as illustrated in Figure 4-33.
This accomplishes two goals. First, it helps focus the SWSE on the safety-related processing,
which is more important on large-scale development projects than on smaller, less complex
programs. Secondly, it provides an opportunity to continue development of the RTM.

The RTM contains multiple columns, with the left-most column containing the list of SSRs.
Adjacent to this column is a description of the SSR, and the name of the CSCI where the
individual SSR has been implemented. Adjacent to this column is a column containing the name
of the CSU where the SSR has been implemented. The next column contains the name of the
test procedure that verifies the implementation of the SSR, and the last column documents test
results with pertinent comments. As previously discussed, Table 4-3 illustrates an example of an
the RTM. In some cases, it may only be possible to tag/link the SSR to the CSCI level due to the
algorithms employed or the implementation of the SSR. If this is the case, the SSR will probably
not be verified through analysis, but by an extensive testing effort. The RTM should also be
included as part of the SRCA report to provide the evidence that all of the safety requirements
have been identified and traced to the design and test.

Once the RTM has been populated and all SSRs have been tagged/linked to the application code,
it is time to start analyzing the individual CSUs to ensure that the intent of the SSR has been

4-49

Software System Safety Handbook

Software Safety Engineering

satisfied. Again, in order to accomplish this task, it is best to have the appropriate developers
and/or engineers available for consultation. Process flow charts and DFDs are excellent
examples of soft tools that can aid in this process. These tools can help the engineer review and
analyze software safety interlocks such as checks, flags, and firewalls that have been
implemented in the design. Process flows and DFDs are also useful in performing “What If”
types of analyses, performing safety-critical path analyses, and identifying potential hazards
related to interfacing systems. The SAFs should include the products resulting from these safety
tasks

/ Software Functional Flow - HCR #xxx \

Failure Of System to Enter a Safe Known State Upon Loss Of Command & Control

CSCI (Nam:

Description of CSCI
Function

CSU (Name) CSU (Name) CSU (Name) CSU (Name)
Function Function Function Function
4 v v
CSU (Name) CSU (Name) CSU (Name)
Function . X
Function Function

CSU (Name) CSU (Name)
Function Function

\ [NOte: 1. [CSU’s associated with the SSR/Causal factor]/

Figure 4-33: Identification of Safety-Related CSUs

4.3.6.2.1 Safety Interlocks

Safety interlocks can either be hardware or software oriented. As an example, a hardware safety
interlock would be a key switch that controls a safe/arm switch. Software interlocks generally
require the presence of two or more software signals from independent sources to implement a
particular function. Examples of software interlocks are checks and flags, firewalls, come-from-
programming techniques, and bit combinations.

4.3.6.2.1.1 Checks and Flags

Checks and flags can be analyzed by reviewing the variables utilized by a CSU and ensuring that
the variable types are declared and used accurately from CSU to CSU and that they have been
logically implemented. As an example, lets look at a simple computerized bank checkbook
problem containing two CSUs: Debit and Credit. The Debit CSU utilizes a Boolean variable as a

4-50

Software System Safety Handbook

Software Safety Engineering

flag, called “DBT,” which it initializes as “1111” or “True” and sets this variable every time the
user wishes to make a withdrawal. Meanwhile, the Credit CSU utilizes the same flag for making
deposits; however, it sets it as “1111” or “True” every time the user wishes to make a deposit.
This is a simple logic error that could have been the result of two separate programmers not
communicating or possibly one programmer making a logic error. This was a simple error and
although not life threatening, could cost either the bank or user money simply because the
programmer did not utilize unique flags for both the Credit and Debit CSUs. A more life
threatening example might be found in a hospital that utilizes computers to administer
medication to patients. Within this system, there is one particular CSU that sets a flag every 6
hours that signals the machine to administer medication. However, due to the flag being
implemented within the wrong timer routine (i.e., logic error), the machine sets the flag every
hour resulting in an overdose of medication to the patient.

4.3.6.2.1.2 Firewalls

Software developers, to isolate one area of software processing from another, utilize firewalls.
Generally, they are used by software developers to isolate safety-critical processing from non-
safety-critical processing. As an example, lets assume that in our medication dosage example
there is a series of signals that must be present in order for the medication to be administered.
The actual administration of the medication would be considered as safety-critical processing,
while the general processing of preparing the series of signals would be non-critical. However, it
does take the combination of all of the signals to activate the administration of the medication.
The absence of any one of those signals would inhibit the medication from being administered.
Therefore, it would take multiple failures to cause the catastrophic event. In our checks and flags
example, this type of safety interlock would have prevented the failure of one event causing an
overdose.

4.3.6.2.1.3 Come-From Programming

Come-From programming is another example of the implementation of safety interlocks;
however, it is extremely rigorous to implement; and there are very few compilers available on the
market that will support this technique. Come-from programming is just another way of
protecting or isolating safety-critical code from non-safety-critical code. The difference in this
technique is that it requires the application processing to know where it is at all times by using a
Program Counter (PC) and to know where it has been (i.e., where it has “Come-From”). By
knowing where it is and what the previous processing has been, the application can make validity
checks to determine if the processing has stepped outside of its intended bounds. Lets use the
medication example again. This time lets require the safety-critical processing CSU, “ADMIN”
to only accept an “administer dose” request from CSU “GO.” The “ADMIN” CSU would then
perform a validity check on the origin of the request. An answer of NOT “GO” would result in a
reject and “ADMIN” would either ignore the request, or perform some type of error processing.
This type of processing also prevents inadvertent jumps from initiating safety-critical functions.
In our example, if we suddenly had an inadvertent jump into the “ADMIN” routine, the value of
our new PC would be compared to the value of our previous PC. Having preprogrammed
ADMIN to only accept the PC from the “GO” CSU, ADMIN would recognize the error and
perform the appropriate error processing.

4-51

Software System Safety Handbook

Software Safety Engineering

4.3.6.2.1.4 Bit Combinations

Bit combinations are another example of implementing safety interlocks in software. Bit
combinations allow the programmer to concatenate two or more variables together to produce
one variable. This one variable would be the safety-critical variable/signal, which would not be
possible without the exact combination of bits present in the two variables that were
concatenated together.

4.3.6.2.2 “What If” Analysis

“What If” types of analyses are an excellent way to speculate how certain processing will react
given a set of conditions. These types of analyses allow the SSE to determine if all possible
combinations of events have occurred and to test how these combinations would react under
credible and non-credible events. For example, how would the system react to power
fluctuation/interrupt in the middle of processing. Would the state of the system be maintained?
Would processing restart at the interrupting PC + 1?7 Would all variables and data be corrupted?
These are questions that need to be asked of code which is performing safety-critical processing
to ensure that the programmer has accounted for these types of scenarios and system
environments. “What If” analysis should also be performed on all “IF,” “CASE,” and
“CONDITIONAL” statements used in safety-critical code to ensure that all possible
combinations and code paths have been accounted for, or to avoid any extraneous or undesired
code execution. In addition, this will allow the analyst to verify that there are no fragmented
“IF,” “CASE,” or “CONDITIONAL” statements and that the code has been programmed top-
down and properly structured.

4.3.6.2.3 Safety-Critical Path Analysis

Safety-critical path analysis allows the SSE the opportunity to review and identify all of the
possible processing paths within the software and to identify which paths are safety-critical based
on the identified system-level hazards and the predetermined safety-critical functions of the
system. In this case, a path would be defined as a series of events that when performed in a
series (one after the other) would cause the software to perform a particular function. Safety-
critical path analyses uses the identified system-level hazards to determine whether or not a
particular function is safety-critical or not safety-critical. Functional Flow Diagrams (FFD) and
DFDs are excellent tools for identifying safety-critical processing paths and functions. In most
cases, these types of diagrams can be obtained from the software developers or the IV&V team in
order to save cost and schedule of redevelopment.

4.3.6.2.4 Identifying Potential Hazards Related to Interfacing Systems

DDA also allows the SSE an opportunity to identify potential hazards that would be related to
interfacing systems. This is accomplished through interface analysis at the IDS/ICD level.
Erroneous safety-critical data transfer between system-level interfaces can be a contributing
factor (causal factor) to a hazardous event. Interface analysis should include an identification of
all safety-critical data variables while ensuring that strong data typing has been implemented for
all variables deemed safety-critical. The interface analysis should also include a review of the

4-52

Software System Safety Handbook

Software Safety Engineering

error processing associated with interface message traffic and the identification of any potential
failure modes that would result if the interface fails or the data transferred is erroneous. Failure
modes identified should be tied or linked back to the identified system-level hazards.

4.3.6.3 Detailed Design Analysis Related Sub-processes

4.3.6.3.1 Process Flow Diagram Development

Process Flow Diagram (PFD) development is a line-by-line regeneration of the code into flow
chart form. They can be developed by using a standard IBM flow chart template or by freehand
drawing. PFDs provide the link between the FFD and the DFD and allow the SSE to review
processing of the entire system in a step-by-step logical sequence. PFD development is
extremely time consuming and costly, which is one of the reasons it is treated as a related sub-
process to DDA. If the diagrams can be obtained from the software developers or IV&V team, it
is an added bonus; but the benefits of reverse engineering the design into process flow chart form
do not provide a lot of value to the safety effort in performing hazard causal factor analysis. The
real value of PFD development lies in the verification and validation that the system is
performing the way that it was designed to perform. The primary benefit to process flow chart
development from a system safety viewpoint is that it allows the SSE an opportunity to really
develop a thorough understanding of the system processing, which is essential when performing
hazard identification and causal factor analysis. A secondary benefit is that by reverse
engineering the coded program into flow chart form, it provides an opportunity for the SSE to
verify that all of the software safety interlocks and safety-critical functionality have been
implemented correctly and as intended by the top-level design specifications.

4.3.6.3.2 Code-Level Analysis

Code-level analysis is generally reserved only for highly safety-critical code due to the time, cost,
and resources required to conduct the analysis. However, in very small applications, code-level
analysis may be required to provide adequate assessment of the product. A variety of techniques
and tools may be applied to the analysis of code, largely depending on the programming
language, criticality of the software, and resources available to the software safety program. The
most common method is analysis by inspection. Use of structured analysis methodologies, such
as FTA, Petri Nets, data and control flow analyses, and formal methods is also common at all
levels of design and complexity. None of the techniques are comprehensive enough to be applied
in every situation, and are often used together to complement each other.

Code-level analysis always begins with an analysis of the architecture to determine the flow of
the program, calls made by the executive routine, the structure of the modules, the logic flow of
each module, and finally the implementation in the code. Regardless of the technique used to
analyze the code, the analyst must first understand the structure of the software, how it interacts
with the system, and how it interacts with other software modules.

4-53

Software System Safety Handbook

Software Safety Engineering

4.3.6.3.2.1 Data Structure Analysis

The purpose of data structure analysis is to verify the consistency and accuracy of the data items
utilized by a particular program. This includes how the data items are defined and that this
definition is used consistently throughout the code. One of the best ways to analyze data is to
construct a table (Table 4-5) consisting of all of the data items utilized. The table should contain
the name of the data item; the data type (Integer, Real, Boolean); the variable dimension (16, 32,
64 bit); the names of routines accessing the data item, whether the data item is local or global;
and the name of the common block (if utilized). The appropriate SAF should contain the product
produced from these safety tasks.

Table 4-5: Data Item Example
Data Item Data Routine Common Block
Name Data Type Dimension Accessing Global/Local
JINCOM Integer 32 bit INIT Global None
PROC1 TAB2

4.3.6.3.2.2 Data Flow Analysis

The purpose of data flow analysis is to identify errors in the use of data that is accessed by
multiple routines. Except for a very small application, it would be extremely difficult to
determine the data flow path for every data item. Therefore, it is essential to differentiate
between those data items that will affect or control the safety-critical functions of a system from
those that will not.

DFDs (Figure 4-34) should be developed for all safety-critical data items at both the module and
system level to illustrate the flow of data. The appropriate SAF should contain the product
produced from DFDs. Data is generally passed between modules in one of two ways, globally
(common blocks) and locally (parameter passing). Parameter passing is much easier to analyze,
since the program explicitly declares which routines are passing data. Data into and out of
common blocks should also be traced, but further information will often have to be recorded to
understand which subroutines are involved. A table should be developed to aid in the
understanding of data flowing through common blocks and data passing through several layers of
parameters. This table should describe for each variable the subroutine accessing the variable,
and how the variable is being used or modified. The table should include all safety-critical
variables and any other variables whose use is not clear from the DFD and included with the
appropriate SAF.

An example of errors that can be found from developing both the data item table and the DFDs is
as follows:

* Data which is utilized by a system prior to being initialized,
* Data which is utilized by a system prior to being reset,

* Conditions where data is to be reset prior to its use,

e Unused data items, and

¢ Unintended data item modification.

4-54

Software System Safety Handbook

Software Safety Engineering

~

~

Data File

Designation Table

INPUT \ :
= Output Buffer
FUNCTION
INPUT (|
Designation \
Monitor N
INPUT - ____ N ¥ Output
: p SOFTWARE
Input Table - Controller CLIENT

INPUT —

Status Table - /

Input Buffer

INPUT /

~N

C N

INPUT

Input
Controller

/

Figure 4-34: Example of a Data Flow Diagram

4.3.6.3.2.3 Control Flow Analysis

The purpose of control flow analysis (flow charting) is to reconstruct and examine the logic of
the Program Design Language (PDL) and/or code. Constructing flow charts is one of the first
analytical activities that the analyst can perform as it enables the analyst to become familiar with
the code and its design architecture. The drawback to flowcharting is that it is generally costly
and time consuming. A better approach is to use the team concept and have the safety engineers
interface directly with the software developers and system engineers in order to understand
system processing. In most cases, the software developers and/or system engineers already have
control flow charts developed which can be made available for review by the safety engineer as
needed. Each case needs to be evaluated to determine which process would be more beneficial
and cost effective to the program. In either case, flow-charting should be done at a conceptual
level. Each block of the flow chart should describe a single activity (either single line of code or
several lines of code) in a high-level verbal manner, as opposed to simply repeating each line of
code verbatim. Examples of both good and bad flow charts can be found in Figure 4-35.

4.3.6.3.2.4 Interface Analysis

The purpose of interface analysis is to verify that the system-level interfaces have been encoded
in accordance with the IDS/ICD specifications. Interface analysis should verify that safety-
critical data transferred between system-level interfaces is handled properly. Analyses should be
performed to verify how the system functionality will perform if the interface is lost (i.e.,
casualty mode processing). Analyses should also address timing and interrupt analysis issues in

4-55

Software System Safety Handbook

Software Safety Engineering

regards to interfaces with safety-critical functions and system components. Performing system-
level testing and analyzing the data traffic across safety-critical interfaces is generally the best
way to verify a particular interface. Data should be extracted when the system is under heavy
stress and low stress conditions to ensure that the message integrity in maintained is accordance
with the IDS/ICD.

Incorrect Flow \

Buffer =0

/ Correct Flow

Clear the
Buffer

Set Abort Flag
to True

>

Figure 4-35: Flow Chart Examples

43.6.3.2.5 Interrupt Analysis

The purpose of interrupt analysis is two-fold. The SSE must first determine the impact of the
interrupts on the code; and second, determine the impact of the prioritization of the program
tasks. Flow charts and PDLs are often used to determine what will happen if an interrupt occurs
inside a specific code segment. If interrupts are locked out of a particular segment, the safety
engineer must investigate how deep the software architecture will allow the interrupts to be
stacked, so that none will be lost. If interrupts are not locked out, the safety engineer must
determine if data can be corrupted by a low-priority task/process interrupting a high-priority
task/process, which changes the value of the same data item.

Performing interrupt analysis in a multi-task environment is a little more difficult, since it is
possible for any task to be interrupted at any given point of execution. It is impossible to analyze
the effect of an interrupt on every instruction. In this case, it is necessary to determine segments
of code that are tightly linked, such as the setting of several related variables. Interrupt analysis
should be limited to those segments in a multi-task environment. Items to consider in order to
perform interrupt analysis include the following:

* Program segments in which interrupts are locked out
v’ Identify the period of time interrupts are locked out.

v' Identify the impacts of interrupts being locked out (such as lost messages and lost
interrupts).

v’ Identify possible infinite loops (including loops caused by hardware problems).

4-56

Software System Safety Handbook

Software Safety Engineering

* Re-entrant code
v’ Are sufficient data saved for each activation?
v’ Is the correct amount of data and system state restored?
v’ Are units that should be re-entrant implemented as re-entrant?
e Code segments which are interruptible
v’ Can the interrupted code be continued correctly?
v" Will interrupt delay time-critical actions (e.g., missile abort signal)?

v' Are there any sequences of instructions which should not under any circumstance be
interrupted?

e Overall program prioritization

v' Are functions such as real-time tasks properly prioritized, so that any time-critical
events will always be assured of execution?

v’ Is the operator interface of a proper priority to ensure that the operator is monitoring?
* Undefined interrupts
v Are they ignored?

v" Is any error processing needed?

4.3.6.3.2.6 Analysis By Inspection

Although inspection is the most commonly used method of code-level analysis, it is also the least
rigorous. That does not lessen its value to the overall safety assessment process. Analysis by
inspection is particularly useful for software that is less critical where a less rigorous
methodology is appropriate. Analysis by inspection is also frequently used with other
techniques, such as FTAs, control flow analyses, etc., to provide a more thorough assessment of
the software. Experience shows that these analysis types are generally complementary, each
having strong and weak points. Therefore, they often complement each other to a degree. As
noted earlier, a single analysis technique is usually not totally sufficient to meet the defined
safety objectives.

Analysis by inspection is exactly as its name implies - a process whereby the analyst reviews the
software source code (high-level language, assembly, etc.) to determine if there are any errors or
structures that could present a potential problem, either in the execution or in the presence of
adverse occurrences, such as inadvertent instruction jumps. To some degree, analysis by
inspection relies on heuristics, “clue lists,” and engineering judgment.

The ability of the analyst to understand the code as written provides an indication of the ability of
future software maintainers to understand it for future modifications, upgrades, or corrections.
Code should be well structured and programmed in a top-down approach. Code that is

4-57

Software System Safety Handbook

Software Safety Engineering

incomprehensible to the trained analyst will likely be incomprehensible to future software
maintainers. The code should not be patched. Patched or modified code provides an opportunity
for a high probability of errors, since it was rewritten without the benefit of an attendant safety
analysis and assessment. The net result is a potentially unsafe program being introduced into a
previously “certified” system. Patching the software introduces potential problems associated
with the configuration management and control of the software.

“Clue lists” are simply lists of items that have historically caused problems (such as conditional
GO-TO statements), or are likely to be problem areas (such as boundary conditions that are not

fully controlled). Clue lists are developed over a long period of time and are generally based on
the experiences of the analyst, the software development team, or the testing organization. The

list below contains several items that have historically been the cause of software problems.

NOTE: It is up to the individual safety engineer to tailor or append this list based on the language
and software architecture being utilized.

a. Ensure that all variables are properly defined, and data types are maintained throughout
the program.

b. Ensure that, for maintainability, variables are properly defined and named.
c. Ensure that all safety-critical data variables and processing are identified.

d. Ensure that all code documentation (comments) is accurate and that CSCI/CSU headers
reflect the correct processing and safety-criticality of the software.

e. Ensure code modifications identified by the STR and date modifications are made.

f. Ensure that processing loops have correct starting and stopping criteria (indices or
conditions).

Ensure that array subscripts do not go out of bounds.
h. Ensure that variables are correct in procedure call lines (number, type, size, order).

i. Ensure that, for parameters passed in procedure call lines, Input-Only data is not altered,
output data is set correctly, and arrays are handled properly.

j. Ensure that all mixed modes of operation are necessary, and clearly documented.

k. Ensure that self-modifying code does not exist.

. Ensure that there is no extraneous or unexecutable code.

m. Ensure that local variables in different units do not share the same storage locations.

n. Ensure that expressions are not nested beyond 5 levels, and procedures/modules/
subroutine are less than 25 lines of executable code.

o. Ensure that all logical expressions are used correctly.

p. Ensure that processing control is not transferred into the middle of a loop.

4-58

Software System Safety Handbook

Software Safety Engineering

g. Ensure that equations are encoded properly in accordance with specifications.

r. Ensure that exceptions are processed correctly. In particular, if the “ELSE” condition is
not processed, will the results be satisfactory?

s. Ensure that comparisons are made correctly.
t. Ensure that common blocks are declared properly for each routine they are used in.
u. Ensure that all variables are properly initialized before use.

The thoroughness and effectiveness of an analysis performed by inspection is very dependent on
the analyst’s expertise; his/her experience with the language; and, to a lesser degree, the
availability of the above mentioned clue lists. Clue lists can be developed over a period of time
and passed on to other analysts. Unfortunately, analysts often tend to keep these lists secret.
Many of the design guidelines and requirements of STANAG 4404 are based on such clue lists.
However, in this document, the individual clues have been transformed into design requirements
(see Appendix E).

The language used for software development and the tools available to support that development
affect the ability to effectively analyze the program. Some languages, such as Ada and Pascal,
force a structured methodology, strong information hiding, and variable declaration. However,
they introduce complexities and do not support certain functions that are often necessary in
system development. Therefore, other languages often augment them. Other languages, such as
C and C++, easily support object-oriented programming, data input/output structures, and
provide substantial flexibility in coding. However, they provide for the construction of
extremely complex program statements and information hiding that are often incomprehensible
even to the programmer, while not enforcing structured programming and modularization.

Hardware, especially the microprocessor or micro-controller, can have a significant influence on
the safety of the system irrespective of the computer program. Unique aspects of the hardware
may also affect the operation of the machine code in an unexpected manner. Design engineers,
especially those often referred to as “bit-fiddlers,” take great pride in being able to use unique
characteristics of the hardware to increase the efficiency of the code or to make the reading of the
machine code as obscure as possible. Occasionally, assemblers also use these unique hardware
aspects to increase the efficiency and compactness of the machine code; however, it can pose
limitations and possible safety risks.

4.3.6.3.2.7 Code Analysis Software Tools

A couple of software tools used to aid in the code analysis process are a tool called “WINDIFF”
and one called “TXTPAD32.”

WINDIFF, which is a purchased MS product provides color-coded, in-line source-code
comparisons for performing delta analysis. Shareware equivalents do exist for this capability.

TXTPAD32 is a “shareware” 32-bit text editor that has many features that expedite code
analysis, such as Find In Files for string searches in multiple files and directories, DOS command

4-59

Software System Safety Handbook

Software Safety Engineering

and macro execution, bracket matching (parenthesis, braces, brackets), line numbering, color-
coding, etc.

4.3.7 System Hazard Analysis

The SHA is accomplished in much the same way as the SSHA. That is, hazards and hazard
causal factors are identified; hazard mitigation requirements communicated to the design
engineers for implementation; and the implementation of the SSRs are verified. However,
several differences between the SSHA and SHA are evident. First, the SHA is accomplished
during the acquisition life cycle where the hardware and software design architecture matures.
Second, where the SSHA focused on subsystem-level hazards, the SHA refocuses on system-
level hazards that were initially identified by the PHA. In most instances, the SHA activity will
identify additional hazards and hazardous conditions; because the analyst is assessing a more
mature design than that which was assessed during the PHA activity. And third, the SHA
activity will put primary emphasis on the physical and functional interfaces between subsystems,
operational scenarios, and human interfaces.

Figure 4-36 graphically represents the primary sub-tasks associated with the SHA activity. Due
to the rapid maturation of system design, the analysis performed at this time must be in-depth and
as timely as possible for the incorporation of any SSRs derived to eliminate or control the
system-level hazards. As with the PHA and the SSHA, the SHA must consider all possible
causes of these hazards. This includes hardware causes, software causes, human error causes,
and software-influenced human error causes. The activity of analyzing hazard causal factors to
the level, or depth, necessary to derive mitigation requirements will aid in the identification of
physical, functional, and zonal interfaces.

(Inputs Outputs

* PHA (Updates to SSHA & HARs

+ SSHA Primary Task * Inputs to S/W Design
¢SS, S/SDD ¢ Inputs to SPRA Reviews
 IRS, IDD * Inputs to Interface Design

¢ Tailored Generic S/W
Requirements List

¢ Incident/Trouble Reports

» Threat Hazard Analysis

« Life Cycle Environmental
Profile

¢ Hazard Action Reports

* Lessons Learned

* Inputs to Test Rqmts

* Inputs to Test Plan

¢ Prioritized Hazard List

¢ List of Causal Relation-
ships to Hazards

¢ Hazards recommended for

closure

System Hazard
Analysis (SHA)

Iterative Loop
Primary Sub-Tasks Critical Interfaces
 Analyze IRS, IDD (Implementation of Rqmts)
* Integrate Results of the SSHA * Software Safety Working Group
* Examine Causal Relationship of Multiple * System Safety Working Group
Failure Modes (Hardware, Software, Human) ¢ Test Planning Working Group
¢ Determine Compliance with Safety Criteria ¢ Operational Test & Evaluation

* Assess Hazard Impacts Related to Interfaces
* Develop Requirements to Minimize Effects
* Develop Test Rqmts to Verify Hazard Mitigation

Figure 4-36: System Hazard Analysis

4-60

Software System Safety Handbook

Software Safety Engineering

In a majority of the hazards, the in-depth causal factor analysis will identify failure modes (or
causal factor pathways) which will cross physical subsystem interfaces, functional subsystem
interfaces, and even contractor/subcontractor interfaces. This is graphically depicted in Figure 4-
37.

Propulsion Subsytem
Contractor (A)
I
““‘;“;Z;f:,’.‘.““ Hardware H;,::n Propulsion Subsystem
Contractor (A)
el | e Sensor Suite/Sensor Data Throughput
Contractor (B)

Input From Operating Computer Operating System
nteriacing
\ Subsystem System Fault Contractor (C)

Figure 4-37: Example of a System Hazard Analysis Interface Analysis

In this example, the analyst uses a fault tree approach to analyze a system-level hazard "Loss of
Thrust Actuation." This hazard is depicted as the top event of the fault tree. The SHA activity
analyzes all causes to the hazard to include the software branch which is a branch of the "OR"
gate to the top-level event. Although this hazard would possess hardware causes (actuator
control arm failure) or human error causes (pilot commands shutdown of control unit), the
software contribution to the hazard will be the branch discussed.

In this example, "Thrust Actuation" is a function of the propulsion system and administratively
controlled by the Propulsion IPT of Contractor "A." The computer hardware and software
controlling the thrust actuators are also within the engineering boundaries of the same IPT.
However, the software safety analyst has determined, in this case, that a fault condition in the
computer operating system (OS) is the primary causal factor of this failure mode. This OS fault
did not allow actuator sensor data to be read into sensor limit tables and allowed an overwrite to
occur in the table. The actuator control algorithm was utilizing this sensor data. In turn, the
actuator control computer software component functional architecture could not compensate for
loss of credible sensor data which transitioned the system to the hazardous condition. In this
example, the actuator and controlling software are designed by Contractor A; the sensor suite and
throughput data bus are designed by Contractor B; and the computer OS is developed by
Contractor C.

Demonstrated in this example, is the safety analysis performed by Contractor C. If Contractor C
is contractually obligated to perform a safety analysis (and specifically a software safety analysis)
on the computer OS, the ability to bridge (Bottom-Up Analysis) from an OS software fault to a
hazardous event in the propulsion system is extremely difficult. The analysis may identify the
potential fault condition, but not identify its system-level effects. The analysis methodology

4-61

Software System Safety Handbook

Software Safety Engineering

must rely on the “clients,” of the software OS, or Contractor A, to perform the Top-Down
analysis for the determination of causal factors at the lowest level of granularity.

In-depth causal factor analysis during the SHA activities will provide a springboard into the
functional interface analysis required at this phase of the acquisition life cycle. In addition, the
physical and zonal (if appropriate) interfaces must be addressed. Within the software safety
activities, this deals primarily with the computer hardware, data busses, memory, and data
throughput. The safety analyst must ensure that the hardware and software design architecture is
in compliance with the criteria set by the design specification. As the preceding paragraphs
pertaining to PHA and the SSHA (preliminary and detailed code analysis) addressed analysis
techniques, they will not be presented here. This section will focus primarily on the maturation
of the hazard analysis and the evidence audit trail to prove the successful mitigation of system,
subsystem, and interface hazards.

Hazard causal factor analysis and the derivation of safety-specific hazard mitigation requirements
have been discussed previously in terms of the PHA and SSHA development. In addition, these
sections demonstrated a method of documenting all analysis activity in a hazard tracking
database to provide the evidence of hazard identification, mitigation, and residual risk. Figure 4-
29 (of the PHA) specifically depicted the documentation of hazard causes in terms of hardware,
software, human error, and software-influenced human error. As the system design architecture
matures, each safety requirement that helps either eliminate or control the hazard must be
formally documented (Figure 4-38) and communicated to the design engineers. In addition, the
SHA activities must also formally document the results of the interface hazard analysis.

/ HAZARD CONTROL RECORD psck: \

Functional Interface Hazards:

Identify Functional, Ly
Physical, and Zonal Physical Interface Hazards:
Interface Influences and ~
Halard Impllcatlons ql Interface Hazards:
Hazard Control Design Requirements:
Design Hardware:
Identify Hazard Elimination, P Design Software:
Mitigation/Control —>
Requirements For Each Safety/Warning Devices:
Hazard Causal Factor >
\Protective Equipment:

Nrocedures and/or Training:

Hazard Requirement Reference:

o v,

Figure 4-38: Documentation of Interface Hazards and Safety Requirements

4-62

Software System Safety Handbook

Software Safety Engineering

At this point, the safety analyst must focus on the ability to define safety test and verification
requirements. The primary purpose of this activity is to provide the evidence that all safety
requirements identified for hazard elimination or control have been successfully implemented in
the system design. It is quite possible that the analyst will discover that some requirements have
been implemented in total, others partially, and a few which were not implemented. This is why
active involvement in the design, code, and test activities is paramount to the success of the
safety effort.

The ability to assess the system design compliance to specific safety criteria is predicated on the
ability to verify SSRs through test activities. Figure 4-39 depicts the information required in the
Hazard Control Records (HCR) of the database to provide the evidence trail required for the risk
assessment activities.

/ HAZARD CONTROL RECORD prces

Hazard

Hardware V&V Results:

Identify Specific Requirements
to Verify the Successful

Software V&V Results:

i

N\

Implementation of Safety Design
Requirements -Include Results

Human Error V&V Results:

Safety/Warning Devices V&V Rest

Protective Equipment V&V Results:

Procedures and/or Training V&V Result:

Documentation of
Additional Remarks
and Comments Pertaining
To Residual Risk

Additional Remarks:

|

Close Out Date: Close Out HRI: Originator:

Figure 4-39: Documenting Evidence of Hazard Mitigation

4.4 Software Safety Testing & Risk Assessment

44.1 Software Safety Test Planning

This Handbook has focused on the analytical aspects of the SSS program to this point. Analysis
represents about half of the total effort in the SSS process. The other half consists of verification
and validation of the SSR implementation and the determination and reporting of the residual
risk. However, the software safety engineers do not need to perform the testing: that is best left
to the testing experts, the test engineering or verification and validation team. Software testing is
an integral part of any software development effort. Testing should address not only
performance-related requirements, but the SSRs as well. The SSS Team must interface directly
with the software developers and verification and validation team to ensure that the code

4-63

Software System Safety Handbook

Software Safety Engineering

correctly implements all of the SSRs and that the system functions in accordance with the design
specifications.

Mlustrated in Figure 4-40, the SSS Team should integrate the safety testing with the normal
system testing effort to save time, cost, and resources. The software safety engineers in
cooperation with the verification and validation team can identify a significant portion of the
SSRs that can be verified through testing.

Inputs Outputs \
\

éESULTS FROM: \ . (FEMP Update
¢ PHA Pl‘lmal'Y Task ¢ Input to Test Plans

¢ Tailored Generic Safety e Input to Test Procedures
Requirements List

SSHA ¢ Evaluations Requirements
« SHA Software Safety for Models, Simulators,
. Tools, and Environment
*RHA/SRCA Test Planning
INPUTS FROM:

¢ Generic Lessons Learned
Test Requirements

¢ SPRA Requirements 4_ __________
\\ TEMP A Iterative Loop _ A
Primary Sub-Tasks Critical Interfaces
¢ Develop System Safety Test Plan ¢ Software Safety Working Group
¢ System Development of Test Procedures ¢ Software Testing
¢ Software Quality Assurrance
¢ User

" 7

Figure 4-40: Software Safety Test Planning

The software test planning process must address all of the simulators, models, emulators, and
software tools that will be utilized by the test team (whether for verification and validation or
safety testing) in order to ensure that all processes, requirements, and procedures for validation
are in place. This validation must occur prior to use to ensure that the data that they manipulate
and interact with is processed as intended. Invalid models, simulators, etc. will invalidate the
test results. It is also important that the software safety test plan address how the SWSE will
participate in Test Working Group (TWG) meetings and how inputs will be provided to the TRR
and SPRA.

Outputs from this software safety test planning process include an updated verification and
validation plans, updates to the Test and Evaluation Master Plan (TEMP), as well as evaluation
requirements for simulators, models, emulators, test environments and tools. It also includes
updates to the Software Test Plan (STP) and recommendations for modifications to test
procedures to ensure coverage of all the SSRs identified for test by the RTM and software
verification trees within the SRCA.

The safety manager must integrate software safety test planning activities into the overall
software testing plan and the TEMP. This integration should include the identification of all
safety-critical code and SSRs. The SRCA (Appendix C, Paragraph C.1.8) must include all of the

464

Software System Safety Handbook

Software Safety Engineering

SSRs. The software safety test planning must also address the testing schedule [Functional
Qualification Testing (FQT) and system-level testing] of all SSRs. Safety must integrate this
schedule into the overall software test schedule and TEMP. The software safety test schedule
will largely depend on the software test schedule and the safety analysis. Beware of test schedule
compression due to late software development: the safety schedule must allow sufficient time for
the effective analysis of test results. It is also important that the SSS Team identifies system-
level test procedures or benchmark tests to verify that the hazards identified during the analyses
(SHA, SSHA) have been eliminated, mitigated, or controlled.

During the software safety test planning process, system safety must update the RTM developed
during the SRCA by linking requirements to test procedures. Each SSR should have at least one
verification and validation test procedure. Many SSRs will link to multiple test procedures.
Linking SSRs to test procedures allows the safety engineer to verify that all safety-related
software will be tested. If requirements exist that system safety cannot link to existing test
procedures, the safety engineer can either recommend that the SSS Team develop test procedures
or recommend that an additional test procedure be added to the verification and validation test
procedures. There may be cases where SSRs cannot be tested due to the nature of the
requirement or limitations in the test setup. In this case, software DDA must be performed.

The SSS Team must review all of the safety-related verification and validation test procedures to
ensure that the intent of the SSR will be satisfied by the test procedures. This is also for the
development of new test procedures. If a specific test procedure fails to address the intent of a
requirement, it is the responsibility of the SSS Team to recommend the appropriate modifications
to the verification and validation team during TWG meetings.

44.2 Software Safety Test Analysis

Software testing (Figure 4-41) is generally grouped into three levels: unit testing, integration
testing, and system integration testing. However, within each level, there are often numerous
sublevels. This is especially true in integration testing. In addition to the software under
development, the Software Engineering IPT may develop support software to include simulation,
emulation, stimulation, run-time environment, data extraction and reduction software, and
mathematical models.

The SSS Team must participate in the specification of these programs, just as they do for the
application software under development. They will need to specify the capabilities of the
simulators and stimulators, such as the ability to induce faults into the system and to test its
response to those conditions. The SSS Team must also specify the parameters to be extracted to
perform the necessary safety assessment. To a large extent, this process needs to occur up front
to permit the software engineering team adequate time to develop these programs.

At the unit level, testing is generally limited to the functionality of the unit or module. However,
to test that functionality, the developer requires test drivers and receivers to either stimulate the
unit under test or simulate programs with which the unit or module communicates. Integration
testing is performed at several levels beginning with building modules from units and gradually
progressing up to system-level testing. Integration testing begins with interfacing units that have
completed unit-level testing to ensure that they interact properly. Additional units are added until

4-65

Software System Safety Handbook

Software Safety Engineering

a configuration item is completely tested. Several sets of integration testing may occur in parallel
in complex systems involving several CSCIs. CSCls are then integrated at the next level until
the complete software system is tested. Finally, the total system, hardware and software, is
subjected to integration testing at the system level with simulators, stimulators, and run-time
environments. Regardless of the degree of sophistication in the testing, laboratory testing is
limited by the fact that the environment is very different from the actual environment that the
system will be deployed into. This is caused by the limitations on the simulators that can be
developed. It may not be practical or desirable to implement many requirements due to the
inherent complexity and difficulty in validating these programs. An example of this type of
problem occurred in one U.S. Navy system. The system had undergone extensive laboratory
integration and system-level testing, however, when the system was fielded for developmental
testing, the system shutdown due to the ship’s pitch and roll. The laboratory environment had
not exercised the ships motion interlocks properly.

/f Inputs

* TEMP
* Test Plans & Procedures
¢ [IV&V Plan

¢ Preliminary Test Results
* Draft Test Reports

* STR/SPRs

¢ System Level Specs

« SRCA/RHA

* RTM

Outputs

(Updates to Safety Test
Procedures

¢ Updates to TEMP

« STR/STP/HARs

* Inputs to SPRAs

e Uptdates to RTM

Primary Task

Software Safety
Testing and Analysis

Iterative Loop

Primary Sub-Tasks Critical Interfaces

* Validate Safety Test Procedures

* Perform and/or Monitor Safety Testing
¢ Perform Test Data Reduction

* Perform Test Data Analysis

* Retest of Failed System Requirements
* Develop Safety Test Report

¢ Software Safety Working Group
* Software Testing

* Software Quality Assurrance

* User

Figure 4-41: Software Safety Testing and Analysis

Testing can represent a large portion of the overall software safety effort. The development of
safety design requirements, both generic and system-specific, and the subsequent analysis of their
implementation requires that they be verified and validated. Detailed analyses of the design often
result in the need to perform tests to verify characteristics, both desirable and undesirable that
cannot be verified through analysis. This is especially true of timing and queuing requirements.
The testing phase is complete when the SSS Team completes its analysis of the test results and
assesses the residual risk associated with the software application in the system.

As noted during the requirements analysis phase, the SSS Team must analyze the implementation
of the SSRs to ensure that the intent of the requirement is met. Likewise, in reviewing the test
cases and procedures, the SSS Team must ensure that they will validate the correct
implementation of the requirements. “Correct” in this context means that the test cases and

4-66

Software System Safety Handbook

Software Safety Engineering

procedures verify the intent, not just the letter of the requirement. It differs from the term
“correctness” in software engineering that means that the resulting code fulfills the specifications
and meets the users’ needs. The software safety analyst must ensure that the test environment,
test cases, and test procedures will provide the required data to assess safety of the code. Often,
the SSS Team can incorporate safety test requirements into the routine testing of the software
modules and configuration items at the system level with no impact on the testing schedule or
process.

Inherent to the software safety testing process is the need for the SSS Team to provide as much
information as possible to the software testers at the module, integration, and system level,
regarding the safety-critical aspects of the system and its software. They must identify those
portions of the code that are safety-critical, at both a module level and at a functional level. They
must also identify those tests that are safety specific or those portions of other tests that have a
bearing on the safety aspects of the system. The most effective method of identifying safety-
critical code is to establish early in the system development process a means of marking it in the
system documentation. Providing the RTM (and updates) to the test team also provides them an
opportunity to review all the SSRs and to understand which requirements are safety-critical and
which is safety-significant. With a little training, the test team can identify safety anomalies and
provide safety trouble reports against the SSRs and other requirements.

As part of the safety test cases, the SSS Team must provide testers with a list of the test
environment conditions (e.g., simulators, drivers, etc.), test procedures, expected and undesired
outcomes, and the data extraction requirements. Often, the testing organization will assume the
responsibility for this development if the SSS Team provides them the necessary guidance and
training mentioned above. Although this may seem prohibitive from a time standpoint, the
software testers possess the detailed knowledge and experience necessary to design the most
effective, efficient tests to help streamline the effort. However, even if the testers assume this
responsibility, the SSS Team must review the test procedures and the test results to ensure their
completeness and accuracy.

Test procedure validation requires that the analysts examine the procedures being established and
verify that these procedures will completely test the SSRs or verify those potential failure modes
or causal factors cannot result in a hazardous condition. The SSS Team must monitor the safety
testing to both validate the procedures and make any adjustments necessary to spot anomalies
that may have safety implications. This does not mean that a member of the SSS Team need be
present for every test run. Often, this responsibility can be assigned to a member of the test team
as long as they have the appropriate guidance and training. The software test team must annotate
anomalies noted during the tests on the STR, as they relate to test procedures or test outcomes.
With the proper training and guidance, they will be able to identify potential safety-related
anomalies.

A majority of the anomalies will not be uncovered until the testing organization reduces the test
data into a usable form. Data reduction involves extracting the data recorded during the tests;
processing the data such that performance and other parameters can be derived; and presenting
the information in a readable, understandable format. For example, in testing an Operational
Flight Program (OFP) for an aircraft, the displays and data presented to the testers may appear
valid. However, until that data is compared to that generated by a mathematical model, the

4-67

Software System Safety Handbook

Software Safety Engineering

results are uncertain. Upon comparison, the testing organization may discover anomalies in the
data (e.g., altimeter readout: errors of a few feet during landing can be disastrous yet appear
acceptable in the laboratory). At this point, the software development organization must
determine whether the anomalies are a result of errors in the test procedures, the test
environment, the OFP, or in the mathematical model itself. If the errors are in the procedures or
environment, the testing organization can make the appropriate changes and re-run the test. If
the errors are in either the OFP or the mathematical model, the analysts must determine what the
anomaly is and the necessary correction. In either case, the proposed changes must be approved
by the CM team and submitted through the appropriate configuration control process (of which
system safety is a part), including the analysis and testing regimen, before being implemented.
The software testing organization performs regression testing and then repeats the test case(s)
that failed. The correction of errors often unmasks more errors or introduces new ones. One
study found that for every two errors found and corrected one was either unmasked or a new one
introduced. Therefore, regression testing is an essential part of the overall testing process. It
ensures that the modifications made do not adversely affect any other functionality or safety
characteristics of the software. The SSS Team must participate in the development of the
regression test series, at all levels, to ensure that SSRs are revalidated for each change.

Obviously, in a complex system, the above-described process will result in a substantial number
of STRs and modifications to the software. Often, the software configuration control board will
group several STRs affecting a single module or configuration item together and develop a one-
time fix. As discussed in Appendix C-9, the SSS Team must be in the STR review process to
ensure that the modifications do not adversely affect the safety of the software and to permit
updating analyses as required.

In reviewing extracted data, the SSS Team must know those parameters that are safety-critical,
and the values that may indicate a potential safety problem. Therefore, in the development of the
data extraction, the software testers and SSS Team must work closely to ensure that the necessary
data be extracted and that the data reduction programs will provide the necessary data in a
readable format for use by the software safety and software testing groups. This is why the data
analysis process discussed in Paragraph 4.3.7.3.2.2 is so important. If this analysis is done
properly, all of the safety-critical data items will have been identified and are available for the
software test team. If data analysis was not done, system safety will require interaction with
domain experts to provide the necessary detailed knowledge of significant parameters. If the data
extraction and reduction programs are written correctly with sufficient input from the SSS Team,
the resulting printout will identify those parameters or combinations of parameters that represent
a potentially hazardous condition. However, there is no substitute for analysis of the data since
not all potentially hazardous conditions can be identified in advance.

Part of the data extraction may be needed to monitor conditions that cause the software to
execute specific paths through the program (such as NO-GO paths). Often, these parameters are
difficult or impossible to extract unless the program contains code specially designed to output
that data (write statements, test stubs, breaks) or unless the test environment allows the test group
to obtain a snapshot of the computer state (generally limited to monitoring computer registers).
Unfortunately, test stubs often change the conditions in the executing software and may result in
other errors being created or masked. Therefore, their use should be minimized. If used, the

4-68

Software System Safety Handbook

Software Safety Engineering

software testing organization must perform regression testing after these stubs have been
removed to ensure that errors have not been masked, additional errors introduced by their
removal, or timing errors created by their removal.

The purpose of data extraction and analysis is to identify safety-related anomalies and
subsequently the causal factors. The causal factors may be errors in the code, design,
implementation, test cases, procedures, and/or test environment. If the casual factor cannot be
identified as a procedural test error, test case error, or test environment error, the software safety
analyst must analyze the source code to identify the root causes of the anomaly. This is the most
common reason for performing code-level analysis. As described in Paragraph 4.3.7, once the
causal factor is identified, the analyst develops a recommended correction, in coordination with
the software developer, and presents it via the STR process to the software configuration control
board. The analyst also needs to determine whether specific generic guidelines and requirements
have been adhered to.

Occasionally, the software safety analyst will identify additional SSRs that must be incorporated
into the system or software design. These are submitted as recommended corrective actions
through the STR process. The SSS Team must perform a preliminary assessment of the risk
associated with the new requirement and present it as part of a trade-off study to the Systems
Engineering IPT. The SSS Team will write up the recommended addition as an ECP and, if
approved, will undergo the same process for analyzing and testing the modification as for an
STR.

SSRs cannot always be validated through testing. Often, this will show up as a failure in the test
for a variety of reasons or a no-test. For example, limitations on the capabilities of simulators,
stimulators, or the laboratory environment may preclude passing or completing certain tests. The
SSS Team will need to make an engineering judgment as to whether the testing that has been
completed is adequate. Additional tests may be required to provide sufficient assurance that the
function is safe or to provide the desired level of safety assurance.

Throughout the testing process, the SSS Team will interact closely with the software testing
organization to ensure that safety requirements are addressed at all levels. Together, the groups
will assess the results of the testing performed and begin developing the safety test report. The
report must identify the tests performed and the results of the analysis of the tests. References to
test reports from the software testing group, STRs, ECPs, and anomalies detected and corrected
should all be included in the test report. At the conclusion of the testing, the SSS Team uses the
results to update the RTM in the SRCA and the various preliminary and detailed analyses
performed on the system and its software. The software safety test report will be appended to the
system safety test report and will form a part of the basis for the final system SAR.

4.4.3 Software Standards and Criteria Assessment

This paragraph provides guidance to the SSS Team to verify that software is developed in
accordance with applicable safety-related standards and criteria. The assessment (Figure 4-42)
begins very early in the development process as design requirements are tailored and
implemented into system-level and top tier software specifications and continues through the

4-69

Software System Safety Handbook

Software Safety Engineering

analysis of test results and various reports from other IPTs. Ultimately, the assessment becomes
an integral part of the overall SAR.

Standards and criteria include those extracted from the generic documents such as STANAG
4404 and military, federal, and industry standards and handbooks; lessons learned; safety
programs on similar systems; internal company documents; and other sources. Verification that
the software is developed in accordance with syntactic restrictions and applicable software
engineering standards and criteria is largely a function that the SSS Team can delegate to the
SQA, Software Configuration Management (SCM), and Software Testing (including the
verification and validation) teams. This is especially true with many of the generic software
engineering requirements from STANAG 4404, IEEE Standard 1498, and other related
documents. The SQA and SCM processes include these requirements as a routine part of their
normal compliance assessment process. The software developers and testers will test generic or
system-specific safety test requirements as a normal part of the software testing process. System
safety must review test cases and test procedures and make recommendations for additional or
modified procedures and additional tests to ensure complete coverage of applicable requirements.
However, review of test cases and procedures alone may not be sufficient. A number of the
generic requirements call for the safety analyst to ensure that the code meets their intent versus
the letter of the safety requirement. As noted earlier, due to the ambiguous nature of the English
language, specifications and safety requirements may be interpreted differently by the software
developer thus not meeting the intent of the requirement. In some instances, this requires an
examination of the source code (see Paragraph 4.3.7).

Inputs

f- SRCA/RHA
- SDP
« SRS, SDD, IRS, IDD, VDD

Outputs

(.

Compliance Assessment
Report for Safety-Related

Primary Task

* Source Code Listing

* Configuration Manage-
ment Plan

¢ Software QA Plan

* Lessons Learned

* CRLCMP

* Generic Safety Rqmts List

* Design Standards

¢ General Rgmts Doc

Primarg Sub-Tasks

Software Requirements
* Inputs to Software Safety
Assessment Report
* Inputs to SPRA Reviews

Verify Software
Developed IAW
Standards & Criteria

Iterative Loop
Critical Interfaces

(

Related Safety Requirements

Figure 4-42:

» Evaluate Safety-Critical S/W Products
Against Identified Safety-Related Rqmts
» Evaluate Life Cycle Plans Against Safety-

* Prepare Compliance Assessment Report for
Generic Safety-Critical Software Reqmts

¢ Software Safety Working Group

* Software Testing

¢ Software Quality Assurrance

* Software Configuration Management
* Software Verfication and Vaidation

¢ Reliability and Maintainability

Software Requirements Verification

The generic software development requirements and guidelines are provided to the SQA team for
incorporation into their assessment process, plans, and reviews. Although many of the specific
test requirements may be assigned to the individual software development teams for unit and

4-70

Software System Safety Handbook

Software Safety Engineering

integration testing, the software testing team generally assumes responsibility for incorporating
generic test requirements into their test planning process. The CM Team is responsible for the
integration of requirements related to CM into their plans and processes that include participation
by safety. The latter include the participation by safety in the CM process.

The SSS Team reviews the assessment performed by the SQA team, incorporating the results for
the safety-related criteria into the final safety assessment. This assessment should occur on a
real-time basis using representatives from the SSS Team (or a member of the SQA team assigned
responsibility for software safety). In order to possess the degree of compliance, these
representatives should participate in code reviews, walk-through processes, peer reviews, and the
review of the software development process. The assessment should include both the degrees of
compliance or the rationale for non-compliance with each of the criteria.

Software safety participates on a real-time basis with the CM process. Therefore, the assessment
against applicable criteria can occur during this process. To a large extent, the degree of
compliance depends on the degree of involvement of system safety in the CM process and their
thoroughness in fulfilling their roles.

The Compliance Assessment Report, as its name implies, is a compilation of the above
compliance assessments with a final assessment as to whether or not the system satisfies the
applicable safety requirements. The compliance assessment is simply a portion of the overall
safety assessment process used to ascertain the residual risk associated with the system.

4.4.4 Software Safety Residual Risk Assessment

The safety risk assessment of software is not as straightforward a process as it is for hardware.
The hardware risk assessment relies on the severity of the hazards and the probabilities, whether
qualitative or quantitative, coupled with the remaining conditions required resulting in a
hazardous condition or an accident. Engineering judgment and experience with similar systems
provide the basis for qualitative probabilities while statistical measurements, such as reliability
predictions, provide the basis for quantitative probabilities. The safety analyst uses this
information to compile a probability of a hazard occurring over the life of the system (hence the
residual risk associated with the system). Coupled with estimates of the likelihood of satisfying
the remaining conditions that result in an accident or mishap, an estimate of the risk results.
Unfortunately, reliability metrics for software are often meaningless; therefore, qualitative risk
assessment must be applied. The latter is based on an assessment by the analyst that sufficient
analysis and testing have been performed. This means sufficient analysis to identify the hazards,
develop and incorporate safety requirements into the design, analyze SSR implementation
including sufficient testing (and analysis of test results) to provide a reasonable degree of
assurance that the software will have a sufficiently low level of risk. The software safety
assessment begins early in the system development process, largely starting with the compliance
assessment of the safety requirements discussed previously. However, the assessment cannot be
completed until system-level testing in an operational environment is complete. This includes
operational test and evaluation, and the analyses that conclude that all identified hazards have
been resolved. The software safety assessment process, illustrated in Figure 4-43, is generally
complete when it is integrated with the SAR.

4-71

Software System Safety Handbook

Software Safety Engineering

As described in Paragraph 4.3.5, the analyst identifies the software causal factors early in the
analytical phase and assigns a hazard severity and software control category (e.g., SHRI) to each.
The result is a software HRI for that causal factor. However, this is not a measure of the safety
risk but an indication of the potential programmatic risk associated with the software. It also
provides an indication of the degree of assurance required in the assessment of the software to
ensure that it will execute safely in the system context. It provides guidance on the amount of
analysis and testing required verifying and validating the software associated with that function
or causal factor. The SHRI does not change unless the design is modified to reduce the degree of
control that the software exercises over the potentially hazardous function. However, analysis
and testing performed on the software reduce the actual risk associated with it in the system
application. In this manner, a qualitative HRI may be assigned to the specific function based on
engineering judgment. The SSS Team needs to document these engineering judgments made for
that function and its associated hazard(s) within the hazard tracking database.

Inputs

* PHA, SSHA, & SHA
* Hazard Action Reports

Primary Task

Outputs

« Input to Milestone
Decision Memorandums

* Safety Test Results

* Software Test Results

* RTM

¢ [V&V Results

* Safety-Related Software
Requirements Assess-
ment.

* OPEVAL Test Results

* Acceptance Test Results

* ECPs, STRs, & SCNs

Software Safety
Residual Risk

Assessment

« Inputs to Software Safety
Assessment Report

¢ Inputs to SPRA Reviews

* Updates to PHA, SSHA,
SHA and HARs

* Software Safety Assess-
ment Report

¢ Inputs to Training Manuals,

Operating Manuals, and

ILS Documentation

Iterative Loop

Primary Sub-Tasks Critical Interfaces

* Assess Results of Software Safety Analysis

* Assess Results of Safety & IV&V Tests

* Review Safety-Critical Software Requirements
Compliance Assessment

* Update Hazard, HARs and Individual HRIs

* Assess Residual Risk of System Modifications

* Generate Safety Residual Risk Assessment Rpt

¢ Software Safety Working Group
* System Safety Working Group

Figure 4-43: Residual Safety Risk Assessment

As with any hazard analysis, closure of the hazard requires that the analyst review the results of
the analyses performed and the tests conducted at both a component and system level. Closure of
hazards occurs on a real-time basis as the design progresses. The SSS Team analyzes the design
and implementation of the functions, both safety-critical and safety-related, and determines
whether it meets the intent of the SSR. It also determines whether the implementation (hardware
and/or software) provides sufficient interlocks, checks, and balances to ensure that the function
will not contribute to a hazardous condition. Coupled with the results of testing performed on
these functions, the analyst uses his or her best judgment as to whether the risk is sufficiently
mitigated.

In performing the assessment of safety and verification and validation testing, the software safety
analyst must examine a variety of metrics associated with testing. These include path coverage,

4-72

Software System Safety Handbook

Software Safety Engineering

overall coverage of the program, and usage-based testing. In general, testing that is limited to the
usage base is inadequate for safety. Safety-critical modules are often those that execute only
when an anomaly occurs. This results in a very low predicted usage, and consequently, usage-
based testing performs very little testing on those functions. The result is that anomalies may be
present and undetected. The SSS Team should assess the degree of coverage and determine its
adequacy. Generally, if the software testers are aware of the need for additional test coverage of
safety-critical functions, they will be incorporated into the routine testing.

The safety program must subject new requirements identified during the analysis and testing
phases to the same level of rigor as those in the original design. However, the SSS Team must
pay particular attention to these areas since they are the areas most likely to contain errors in the
latter stages of development. This is more a function of introducing requirements late, and
reducing the time available for analysis and testing. In addition, the potential interactions with
other portions of the system interfaces may be unknown and may not receive the same degree of
attention (especially at the integration testing level) as the original requirements.

The SSS Team must keep in mind throughout the safety assessment process, the ultimate
definition of acceptable risk as defined by the customer. Where unacceptable or undesirable
risks are identified, the SSS Team, in coordination with the SSWG, must provide the rationale
for recommending to the customer and/or the Safety Review Authority (SRA) acceptance of that
risk. Even for systems which comply with the level of risk defined by the customer's
requirements, the rationale for that assessment and the supporting data must be provided. This
material is also documented in the SAR.

The SAR contains a summary of the analyses performed and their results, the tests conducted and
their results, and the compliance assessment described in Paragraph 4.4.3.

4.5 Safety Assessment Report

The SAR is generally a CDRL item for the safety analysis performed on a given system. The
purpose of the report is to provide management an overall assessment of the risk associated with
the system including the software executing within the system context of an operational
environment. This is accomplished by providing detailed analysis and testing evidence, that all
of the software related hazards have been identified and have been either eliminated or
mitigated/controlled to levels acceptable to the AE, PM and PFS/Safety Manager. It is
paramount that this assessment report be developed as an encapsulation of all of the analysis
performed as a result of the recommendations provided in the previous sections.

The SAR shall contain a summary of the analyses performed and their results, the tests conducted
and their results, and the compliance assessment. Paragraph 4.5.1 is a sample outline for the
SAR. Paragraphs within the SAR need to encompass the following items:

* The safety criteria and methodology used to classify and rank software related hazards
(causal factors). This includes any assumptions made from which the criteria and
methodologies were derived;

e The results of the analyses and testing performed;

4-73

Software System Safety Handbook

Software Safety Engineering

e The hazards that have an identified residual risk and the assessment of that risk;

* The list of significant hazards and the specific safety recommendations or precautions
required to reduce their safety risk; and

* A discussion of the engineering decisions made that affect the residual risk at a system
level.

The final section of the SAR should be a statement by the PFS/Safety Manager describing the
overall risk associated with the software in the system context and their acceptance of that risk.

4.5.1 Safety Assessment Report Table of Contents

1. Introduction (i.e., Purpose, Scope, and Background)

2. System Overview/Concept of Operations

14

¢

¢

¢

Provide a High-level Hardware Architecture Overview

Describe System, Subsystem, and Interface Functionality
Provide Software Architecture Detailed Description

Describe Architecture/Processors/Coding Language Implemented
Describe CSCIs/CSUs and Their Functional Interfaces

Identify Safety-Critical Functionality & Messages/Data

3. System Description

4. Hazard Analysis Methodology

¢

14

Describe Hazard-Based Approach and Structure of the Hazard Tracking Database
Describe SSR Identification Process (Initial RTM Development)

Define Hazard Assessment Approach (i.e., HRI and SHRI Matrices)

Define Tools, Methods, and Techniques Used in the Software Safety Analyses
Include Table With PHA Level Hazards & HRIs

Identify Safety-critical Functions That Are Software Related and Indicate the Hazards That
They Affect

5. Document Hazard Analysis Results

¢

¢

Provide Detailed Records of System-Level Hazards
Provide Detailed Records of Subsystem-Level Hazards

Provide In-depth Evidence of Hazard Causes to the Level Required to Mitigate or Control
the Hazards Effectively, Efficiently, and Economically.

4-74

Software System Safety Handbook

Software Safety Engineering

¢ Identify Hazards That Have Software Influence or Causes (i.e., Software Causal Factors in
the Functional, Physical, or Process Context of the Hazard.)

6. Identify Hazard Elimination or Mitigation/Control Requirements

¢ Describe Sources of SSRs (i.e., safety design requirements, Generics, Functionally Derived
and Hazard Control)

¢ Identify the Initial SSRs for the System
¢ Provide Evidence of SSR Traceability (RTM and Hazard Tracking Database Updates)
¢ Identify Functionally Derived SSRs Based on Detailed Hazard Cause Analysis.
7. Provide Evidence of SSR Implementation in Design
¢ Describe SSR Verification Process
¢ Describe SSR Analysis, Testing and Test Results Analysis
¢ Provide Evidence of SSR Verification (RTM and Hazard Tracking Database Updates)
8. Provide a final Software Safety Assessment
¢ Provide an Assessment of Risk Associated with Each hazard in Regards to Software.
4 Identify Any Remaining Open Issues/Concerns
9. Appendices
¢ SRCA (Include RTM, SSR Verification Trees, and SSR Test Results)
¢ Hazard Tracking Database Worksheets

¢ Any FTA Analysis Reports Generated to Identify Software Effects on Hazards

4-75

Software System Safety Handbook
Appendix A

A. DEFINITION OF TERMS

A1l ACRONYMS

AE
AECL
AFTI
ALARP
ARP
ARTE

CAE
CASE
CCB
CDR
CDRL
CHI
CI

CM
COTS
CPAF
CPU
CRC
CRISD
CRWG
CSCI
Csu
CSR
CTA

DA
DAD
DAL
DDA
DFD
DID
DOD
DOT
DSMC
DU

ECP
E/E/PES
EIA
EMP
EOD
ESH

FAA
FCA
FFD

Acquisition Executive

Atomic Energy of Canada Limited
Advanced Fighter Technology Integration
As Low As Reasonably Possible
Aerospace Recommended Practice

Ada Runtime Environment

Component Acquisition Executive
Computer-Aided Software Engineering
Configuration Control Board

Critical Design Review

Contract Deliverable Requirements List
Computer/Human Interface
Configuration Item

Configuration Management
Commercial-Off-The-Shelf
Cost-Plus-Award-Fee

Central Processing Unit

Cyclic Redundancy Check

Computer Resource Integrated Support Document
Computer Resource Working Group
Computer Software Configuration Item
Computer Software Unit

Component Safety Requirement
Critical Task Analysis

Developing Agency

Defense Acquisition Deskbook
Development Assurance Level
Detailed Design Analysis

Data Flow Diagram

Data Item Description

Department of Defense

Department of Transportation
Defense Systems Management College
Depleted Uranium

Engineering Change Proposal
Electrical/Electronic/Programmable Electronic Systems
Electronic Industries Association

Electro-Magnetic Pulse

Explosive Ordnance Disposal

Environmental Safety and Health

Federal Aviation Administration
Functional Configuration Audit
Functional Flow Diagram

Software System Safety Handbook
Appendix A

FQT
FTA

GOTS
GSSRL

HHA
HMI
HRI

HAR

ICD
ICWG
IDS
IEC
IEEE
ILS
IPD
IPT
IV&V

LOT

MA

MAA
MAIS
MAPP
MDAP
MIL-STD

NASA
NDI
NSS

O&SHA
(O

PA
PCA
PDL
PDR
PEO
PFD
PFS
PHA
PHL
PM
PMR
POA&M
PTR

QA
QAP

QC

Functional Qualification Test
Fault Tree Analysis

Government-Off-The-Shelf
Generic Software Safety Requirements List

Health Hazard Assessment
Human/Machine Interface
Hazard Risk Index

Hazard Action Record

Interface Control Document

Interface Control Working Group

Interface Design Specification

International Electotechnical Commission
Institute of Electrical and Electronic Engineering
Integrated Logistics Support

Integrated Product Development

Integrated Product Team

Independent Verification & Validation

Level of Trust

Managing Authority

Mission Area Analysis

Major Automated Information System
Major Acquisition Policies and Procedures
Major Defense Acquisition Programs
Military Standard

National Aeronautics and Space Administration
Non-Developmental Item
NASA Safety Standard

Operating and Support Hazard Analysis
Operating System

Procuring Authority

Physical Configuration Audit
Program Design Language
Preliminary Design Review
Program Executive Officer
Process Flow Diagram
Principal for Safety
Preliminary Hazard Analysis
Preliminary Hazard List
Program Manager

Program Management Review
Plan of Actions & Milestones
Program Trouble Report

Quality Assurance
Quality Assurance Plan
Quality Control

A-2

Software System Safety Handbook
Appendix A

REP
RFP
RMP
ROM
RTCA
RTM

SAF
SAR
SCCSF
SCFL
SCM
SCN
SDL
SDP
SDR
SEDS
SEE
SEMP
SEMS
SHA
SHCM
SHRI
SIL
SIP
SON
SO0
SOW
SPRA
SQA
SRA
SRCA
SRS
SSE
SSG
SSHA
SSMP
SSP
SSPP
SSR
SSS
SSSH
SSWG
STP
STR
STSC
SwSE
SwSPP
SwSSP
SwSSWG

TEMP

Reliability Engineering Plan
Request for Proposal

Risk Management Plan

Read Only Memory

RTCA, Inc.

Requirements Traceability Matrix

Software Analysis Folder

Safety Assessment Report
Safety-Critical Computing System Functions
Safety-Critical Functions List

Software Configuration Management
Software Change Notice

Safety Data Library

Software Development Plan

System Design Review

Systems Engineering Detailed Schedule
Software Engineering Environment
Systems Engineering Management Plan
Systems Engineering Master Schedule
System Hazard Analysis

Software Hazard Criticality Matrix
Software Hazard Risk Index

Safety Integrity Level

Software Installation Plan

Statement of Operational Need
Statement of Objectives

Statement of Work

Safety Program Review Authority
Software Quality Assurance

Safety Review Authority

Safety Requirements Criteria Analysis
Software Requirements Specifications
Software Safety Engineer

System Safety Group

Subsystem Hazard Analysis

System Safety Management Plan
System Safety Program

System Safety Program Plan

Software Safety Requirements
Software System Safety

Software System Safety Handbook
System Safety Working Group
Software Test Plan

Software Trouble Report

Software Technology Support Center
Software Safety Engineer

Software Safety Program Plan
Software System Safety Program
Software System Safety Working Group

Test and Evaluation Master Plan

A-3

Software System Safety Handbook

Appendix A
TRR - Test Readiness Review
TWG - Test Working Group
WBS - Work Breakdown Structure

A4

Software System Safety Handbook
Appendix A

A.2 DEFINITIONS

NOTE: All definitions used in this handbook have either been extracted from MIL-STD-882C or
MIL-STD-498. A [882] or [498] references each definition. While many may disagree with
aspects of, or the entire definition in total, these were used because of their common use on DOD
programs.

Acceptance. An action by an authorized representative of the acquirer by which the acquirer
assumes ownership of software products as partial or complete performance of a contract. [498]

Acquiring Agency. An organization that produces software products for itself or another
organization. [498]

Architecture. The organizational structure of a system or CSCI, identifying its components,
their interfaces, and concept of execution among them. [498]

Behavioral Design. The design of how an overall system or CSCI will behave, from a user's
point of view, in meeting its requirements, ignoring the internal implementation of the system or
CSCI. This design contrasts with architectural design, which identifies the internal components
of the system or CSCI, and with the detailed design of those components. [498]

Build. (1) A version of software that meets a specified subset of the requirements that the
completed software will meet. (2) The period of time during which such a version is developed.
[498]

Computer Hardware. Devices capable of accepting and storing computer data, executing a
systematic sequence of operations on computer data, or producing control outputs. Such devices
can perform substantial interpretation, computation, communication, control, or other logical
functions. [498]

Computer Program. A combination of computer instructions and data definitions that enables
computer hardware to perform computational or control functions. [498]

Computer Software Configuration Item. An aggregation of software that satisfies an end-use
function and is designated for separate configuration management by the acquirer. CSCls are
selected based on tradeoffs among software function, size, host or target computers, developer,
support concept, plans or reuse, criticality, interface considerations, need to be separately
documented and controlled, and other factors. [498]

Condition. An existing or potential state such as exposure to harm, toxicity, energy source,
activity, etc. [882]

Configuration Item. An aggregation of hardware, software, or both that satisfies an end use
function and is designated for separate configuration management by the acquirer. [498]

Contractor. A private sector enterprise or the organizational element of DOD or any other
government agency engaged to provide services or products within agreed limits specified by the
MA. [882]

A-5

Software System Safety Handbook
Appendix A

Data Type. A class of data characterized by the members of the class and operations that can be
applied to them; for example, integer, real, or logical. [IEEE 729-1983]

Deliverable Software Product. A software product that is required by the contract to be
delivered to the acquirer or other designated recipient. [498]

Design. Those characteristics of a system or CSCI that are selected by the developer in response
to the requirements. Some will match the requirements; others will be elaborations of
requirements, such as definitions of all error messages; others will be implementation related,
such as decisions, about what software units and logic to use to satisfy the requirements. [498]

Fail Safe. A design feature that ensures that the system remains safe or in the event of a failure
will cause the system to revert to a state which will not cause a mishap. [882]

Firmware. The combination of a hardware device and computer instructions and/or computer
data that reside as read-only software on the hardware device. [498]

Hazard. A condition that is a prerequisite to a mishap. [882]

Hazard Probability. The aggregate probability of occurrence of the individual events that
create a specific hazard. [882]

Hazard Severity. An assessment of the consequences of the worst credible mishap that could be
caused by a specific hazard. [882]

Independent Verification & Validation. Systematic evaluation of software products and
activities by an agency that is not responsible for developing the product or performing the
activity being evaluated. [498]

Managing Activity. The organizational element of DOD assigned acquisition management
responsibility for the system, or prime or associate contractors or subcontractors who impose
system safety tasks on their suppliers. [882]

Mishap. An unplanned event or series of events resulting in death, injury, occupational illness,

or damage to or loss of equipment or property, or damage to the environment. An accident.
[882]

Process. An organized set of activities performed for a given purpose. [498]

Qualification Test. Testing performed to demonstrate to the acquirer that a CSCI or a system
meets its specified requirements. [498]

Reengineering. The process of examining and altering an existing system to reconstitute it in a
new form. May include reverse engineering (analyzing a system and producing a representation
at a higher level of abstraction, such as design from code), restructuring (transforming a system
from one representation to another at the same level of abstraction), redocumentation (analyzing
a system and producing user or support documentation), forward engineering (using software
products derived from an existing system, together with new requirements, to produce a new
system), retargeting (transforming a system to install it on a different target system), and

A-6

Software System Safety Handbook
Appendix A

translation (transforming source code from one language to another, or from one version of a
language to another). [498]

Requirement. (1) A characteristic that a system or CSCI must possess in order to be acceptable
to the acquirer. (2) A mandatory statement in contractual binding document (i.e., standard, or
contract). [498]

Reusable Software Products. A software product developed for one use but having other uses,
or one developed specifically to be usable on multiple projects or in multiple roles on one
project. Examples include, but are not limited to, commercial-off-the-shelf software products,
acquirer-furnished software product, software products in reuse libraries, and pre-existing
developer software products. Each use may include all or part of the software product and may
involve its modification. [498]

Risk. An expression of the possibility/impact of a mishap in terms of hazard severity and hazard
probability. [882]

Risk Assessment. A comprehensive evaluation of the risk and its associated impact. [882]

Safety. Freedom from those conditions that can cause death, injury, occupational illness, or
damage to or loss of equipment or property, or damage to the environment. [882]

Safety-Critical. A term applied to a condition, event, operation, process, or item of whose
proper recognition, control, performance or tolerance is essential to safe system operation or use,
e.g., safety-critical function, safety-critical path, safety-critical component. [882]

Safety-Critical Computer Software Components. Those computer software components and
units whose errors can result in a potential hazard, or loss of predictability or control of a system.
[882]

Software Development. A set of activities that results in software products. Software
development may include new development, modification, reuse, reengineering, maintenance, or
any other activities that result in software products. [498]

Software Engineering. In general usage, a synonym for software development. As used in
MIL-STD 498, a subset of software development consisting of all activities except qualification
testing. [498]

Software System. A system consisting solely of software and possibly the computer equipment
on which the software resides and operates. [498]

Subsystem. An element of a system that, in itself may constitute a system. [882]

System. A composite, at any level of complexity, of personnel, procedures, materials, tools,
equipment, facilities, and software. The elements of this composite entity are used together in
the intended operational or support environment to perform a given task or achieve a specific
purpose, support, or mission requirement. [882]

A-7

Software System Safety Handbook
Appendix A

System Safety. The application of engineering and management principles, criteria, and
techniques to optimize all aspects of safety within the constraints of operational effectiveness,
time, and cost throughout all phases of the system life cycle. [882]

System Safety Engineer. An engineer who is qualified by training and/or experience to perform
system safety engineering tasks. [882]

System Safety Engineering. An engineering discipline requiring specialized professional
knowledge and skills in applying scientific and engineering principles, criteria, and techniques to
identify and eliminate hazards, in order to reduce the associated risk. [882]

System Safety Group/Working Group. A formally chartered group of persons, representing
organizations initiated during the system acquisition program, organized to assist the MA system
PM in achieving the system safety objectives. Regulations of the military components define
requirements, responsibilities, and memberships. [882]

System Safety Management. A management discipline that defines SSP requirements and
ensures the planning, implementation and accomplishment of system safety tasks and activities
consistent with the overall program requirements. [882]

System Safety Manager. A person responsible to program management for setting up and
managing the SSP. [882]

System Safety Program. The combined tasks and activities of system safety management and
system safety engineering implemented by acquisition project managers. [882]

System Safety Program Plan. A description of the planned tasks and activities to be used by
the contractor to implement the required SSP. This description includes organizational
responsibilities, resources, methods of accomplishment, milestones, depth of effort, and
integration with other program engineering and management activities and related systems.
[882]

Software System Safety Handbook
Appendix B

B. REFERENCES

B.1 GOVERNMENT REFERENCES
DODD 5000.1, Defense Acquisition, March 15, 1996

DOD 5000.2R, Mandatory Procedures for Major Defense Acquisition Programs and Major
Automated Information Systems, March 15, 1996

DOD-STD 2167A, Military Standard Defense System Software Development, February 29, 1988

MIL-STD 882B, System Safety Program Requirements, March 30, 1984

MIL-STD 882C, System Safety Program Requirements, January 19, 1993

MIL-STD 498, Software Development and Documentation, December 5, 1994

FAA Order 1810, Acquisition Policy

FAA Order 8000.70, FAA System Safety Program

RTCA-DO 178B, Software Considerations In Airborne Systems And Equipment Certification,
December 1, 1992

COMDTINST M411502D, System Acquisition Manual, December 27, 1994

NSS 1740.13, Interim Software Safety Standard, June 1994

Department of the Air Force, Software Technology Support Center, Guidelines for Successful
Acquisition and Management of Software-Intensive Systems: Weapon Systems, Command and
Control Systems, Management Information Systems, Version-2, June 1996, Volumes 1 and 2

AFISC SSH 1-1, Software System Safety Handbook, September 5, 1985

B.2 COMMERICIAL REFERENCES

EIA-6B, G-48, Electronic Industries Association, System Safety Engineering In Software
Development1990

IEC 61508: International Electrotechnical Commission. Functional Safety of
Electrical/Electronic/ Programmable Electronic Safety-Related Systems, December 1997.

EIC 1508 -(Draft), International Electrotechnical Commission, Functional Safety; Safety-Related
System, June 1995

IEEE STD 1228, Institute of Electrical and Electronics Engineers, Inc., Standard For Software
Safety Plans, 1994

IEEE STD 829, Institute of Electrical and Electronics Engineers, Inc., Standard for Software Test
Documentation, 1983

B-1

Software System Safety Handbook
Appendix B

IEEE STD 830, Institute of Electrical and Electronics Engineers, Inc., Guide to Software
Requirements Specification, 1984

IEEE STD 1012, Institute of Electrical and Electronics Engineers, Inc., Standard for Software
Verification and Validation Plans, 1987

ISO 12207-1, International Standards Organization, Information Technology-Software, 1994

Society of Automotive Engineers, Aerospace Recommended Practice 4754: Certification
Considerations for Highly Integrated or Complex Aircraft Systems, November 1996.

Society of Automotive Engineers, Aerospace Recommended Practice 4761: Guidelines and
Methods for Conducting the Safety Assessment Process on Civil Airborne Systems and
Equipment, December 1996.

B.3 INDIVIDUAL REFERENCES

Brown, Michael, L., Software Systems Safety and Human Error, Proceedings: COMPASS 1988

Brown, Michael, L., What is Software Safety and Who’s Fault Is It Anyway?, Proceedings:
COMPASS 1987

Brown, Michael, L., Applications of Commercially Developed Software in Safety Critical
Systems, Proceedings of Parari 99, November 1999

Bozarth, John D., Software Safety Requirement Derivation and Verification, Hazard Prevention,
Ql1, 1998

Bozarth, John D., The MK 53 Decoy Launching System: A “Hazard-Based” Analysis Success,
Proceedings: Parari *99, Canberra, Australia

Card, D.N. and Schultz, D.J., Implementing a Software Safety Program, Proceedings:
COMPASS 1987

Church, Richard, P., Proving A Safe Software System Using A Software Object Model,
Proceedings:15™ International System Safety Society Conference, 1997

Connolly, Brian, Software Safety Goal Verification Using Fault Tree Techniques: A Critically 11l
Patient Monitor Example, Proceedings: COMPASS 1989

De Santo, Bob, A Methodology for Analyzing Avionics Software Safety, Proceedings:
COMPASS 1988

Dunn, Robert and Ullman, Richard, Quality Assurance For Computer Software, McGraw Hill,
1982

Ericson, C.A., Anatomy of a Software Hazard, Briefing Slides, Boeing Computer Services, June
1983

Foley, Frank, History and Lessons Learned on the Northrop-Grumman B-2 Software Safety
Program, Paper, Northrop-Grumman Military Aircraft Systems Division, 1996

B-2

Software System Safety Handbook
Appendix B

Forrest, Maurice, and McGoldrick, Brendan, Realistic Attributes of Various Software Safety
Methodologies, Proceedings: Ninth International System Safety Society, 1989

Gill, Janet A.,Safety Analysis of Heterogeneous-Multiprocessor Control System Software, M.S.
Thesis, Naval Postgraduate School, Monterey, CA, December 1990.

Hammer, William, R., Identifying Hazards In Weapon Systems — The Checklist Approach,
Proceedings: Parari 97, Canberra, Australia

Kjos, Kathrin, Development of an Expert System for System Safety Analysis, Proceedings:
Eighth International System Safety Conference, Volume II.

Lawrence, J.D., Design Factors for Safety-Critical Software, NUREG/CR-6294, Lawrence
Livermore National Laboratory, November 1994

Lawrence, J.D., Survey of Industry Methods for Producing Highly Reliable Software,
NUREG/CR-6278, Lawrence Livermore National Laboratory, November 1994.

Leveson, Nancy, G, SAFEWARE: System Safety and Computers, A Guide to Preventing
Accidents and Losses Caused By Technology, Addison Wesley, 1995

Leveson, Nancy, G., Software Safety: Why, What, and How, Computing Surveys, Vol 18, No.
2, June 1986

Littlewood, Bev and Strigini, Lorenzo, The Risks of Software, Scientific American, November
1992

Mattern, S.F., Software Safety, Masters Thesis, Webster University, St. Louis, MO. 1988

Mattern, S.F. Capt., Defining Software Requirements for Safety-Critical Functions,
Proceedings: Twelfth International System Safety Conference, 1994

Mills, Harland, D., Engineering Discipline For Software Procurement, Proceedings: COMPASS
1987

Moriarty, Brian and Roland, Harold, E., System Safety Engineering and Management, Second
Edition, John Wiley & Sons, 1990

Russo, Leonard, Identification, Integration, and Tracking of Software System Safety
Requirements, Proceedings: Twelfth International System Safety Conference, 1994

Unknown Author: Briefing on the Vertical Launch ASROC (VLA), Minutes, 2™ Software
System Safety Working Group (SwWSSWG), March 1984

B.4 OTHER REFERENCES

DEF(AUST) 5679, Army Standardization (ASA), The Procurement Of Computer-Based Safety
Critical Systems, May 1999

UK Ministry of Defence. Interim DEF STAN 00-54: Requirements for Safety Related Electronic
Hardware in Defence Equipment, April 1999.

B-3

Software System Safety Handbook
Appendix B

UK Ministry of Defence. Defence Standard 00-55: Requirements for Safety Related Software in
Defence Equipment, Issue 2, 1997

UK Ministry of Defence. Defence Standard 00-56: Safety Management Requirements for
Defence Systems, Issue 2, 1996

International Electrotechnical Commission, IEC 61508, Functional Safety of
Electrical/Electronic/Programmable Electronic Safety-Related Systems, draft 61508-2 Ed 1.0.,
1998

Document ID: CA38809-101, International Standards Survey and Comparison to Def(Aust)
5679, Issue: 1.1, Dated 12 May 1999

B-4

Software System Safety Handbook
Appendix C

C. HANDBOOK SUPPLEMENTAL INFORMATION

C.1 PROPOSED CONTENTS OF THE SYSTEM SAFETY DATA
LIBRARY

C11 SYSTEM SAFETY PROGRAM PLAN

The SSPP is a requirement of MIL-STD-882 for DOD procurements. It describes in detail, tasks
and activities of the system safety engineering and management program established by the
supplier. It also describes the engineering processes to be employed to identify, document,
evaluate, and eliminate and/or control system hazards to the levels of acceptable risk for the
program. The approved plan (by the customer) provides the formal basis of understanding and
agreement between the supplier and the customer on how the program will be executed to meet
contractual requirements. Specific provisions of the SSPP include program scope and objectives,
system safety organization and program interfaces, program milestones, general safety
requirements and provisions; and specific hazard analyses to be performed. It must explain in
detail the methods and processes to be employed on the program to identify hazards and failure
modes, derive design requirement to eliminate or control the hazard, and the test requirements
and verifications methods to be used to ensure that hazards are controlled to acceptable levels.
Even if the contract does not require a SSPP, the safety manager of the development agency
should produce this document to reduce interface and safety process misconceptions as it applies
to the design and test groups. An excellent template for the SSPP format is DID DI-SAFT-
80100, or MIL-STD-882C, January 1993.

Specifically, the plan must describe:
* General description of the program,
* System safety organization,
¢SSP milestones,
e SSP requirements,
* Hazard analyses to be performed,
» Hazard analysis processes to be implemented,
* Hazard analyses data to be obtained,
* Method of safety verification,
* Training Requirements,
* Applicable audit methods,

* Mishap prevention, reporting, and investigation methods, and

C-1

Software System Safety Handbook
Appendix C

* System safety interfaces.

If the SSPP is not accomplished, numerous problems can surface. Most importantly, a simple
“roadmap” of hazard identification, mitigation, elimination, and risk reduction effort is not
presented for the program. The result is the reduction of programmatic and technical support and
resource allocation to the SSP. The SSPP is not simply a map of task descriptions of what the
safety engineer is to accomplish on a program, but an integration of the safety engineering across
critical management and technical interfaces. It allows all integrated program team members to
assess and agree to the necessary support required by all technical disciplines of the development
team to support the safety program. Without this support, the safety design effort will fail.

C12 SOFTWARE SAFETY PROGRAM PLAN

Some contractual deliverable obligations will include the development of a SWSPP. This was a
common requirement in the mid-1980s through the early-1990s. The original intent was to
formally document that a development program (that was software-intensive, or that had
software performing safety-critical functions) considered in detail, the processes, tasks,
interfaces, and methods to ensure software was taken into consideration from a safety
perspective. In addition, the intent was to ensure that steps were taken in the design, code, test,
and IV&V activities to minimize, eliminate and/or control the safety risk to a predetermined
level. At the same time, many within the safety and software communities mistakenly
considered software safety to be a completely separate engineering task than the original system
safety engineering activities.

Todays, it is recognized that software must be rendered safe (to the greatest extent possible
equating to the lowest safety risk) through a “systems” methodology. It has been determined, and
agreed upon, that the ramifications of software performing safety-critical functions can be
assessed and controlled through sound system safety engineering and software engineering
techniques. In fact, without the identification of specific software-caused, or software-
influenced, system hazards or failure modes, the assessment of residual safety risk of software
cannot be accomplished. Although software error identification, error trapping, fault tolerance,
and/or error removal is essential in software development, without a direct tie to a system hazard
or failure mode, the product is usually not safety related - it is reliability and system availability.

If possible, and in accordance with MIL-STD-882, specific tasks, processes, and activities
associated with the elimination or minimization of software-specific safety risk should be
integrated into the SSPP. If a customer is convinced that a separate program plan is required for
software safety specifically, this too can be accomplished. It should contain a description of the
safety, systems, and software engineering processes to be employed to identify, document,
evaluate, and eliminate and/or control system hazards (that are software-caused or software-
influenced) to the levels of acceptable risk for the program. It should describe program
interfaces, lines of communication between technical and programmatic functions, and document
the suspense and milestone activities according to an approved schedule. As a reminder, the
software safety schedule of events should correspond with the software (and hardware)
development life cycle, and be in concert with each development and test plan published by other
technical disciplines associated with the program. IEEE STD 1228-1994, IEEE Standard For
Software Safety Plans, provides an industry standard for the preparation and contents of a

C-2

Software System Safety Handbook
Appendix C

SwSPP. An outline based upon this standard is presented in Figure C.1 and can be used as a
guide for plan development.

1. PURPOSE

2. DEFINITIONS, ACRONYMS, ABBREVIATIONS, AND REFERENCES

3. SOFTWARE SAFETY MANAGEMENT

Organization and Responsibilities
Resources

Staff Qualifications and Training
Software Lifecycle

Document Requirements
Software Safety Program Records
Software Configuration Mangement Activities

Software Quality Assurance Activities
Software Verification and Validation Activities
Tool Support and Approval

Previously Developed or Puchased Software
Subcontract Management

Process Certification

4. SOFTWARE SAFETY ANALYSES

Software Safety Analyses Preparation
Software Safety Requirements Analysis
Software Safety Design Analysis

Software Safety Code Analysis

Software Saety Test Analsis
Software Safety Change Analysis

S. POST DEVELOPMENT

Training Monitoring
Deployment Maintenance
Installation Retirement and Notification

Startup and Transition
Operations and Support

6. PLAN APPROVAL

Cl13

Figure C.1: Contents of a SWSPP - IEEE STD 1228-1994

PRELIMINARY HAZARD LIST

The purpose of a PHL is for the compilation of a list of preliminary hazards of the system as
early in the development life cycle as possible. The source of information that assists the analyst
in compiling a preliminary list is

Similar system hazard analysis,
Lessons learned,

Trade study results,

Preliminary requirements and specifications,

Design requirements from design handbooks (i.e., AFSC, DH 1-6, System Safety),

Potential hazards identified by safety team brainstorming,

Software System Safety Handbook
Appendix C

e Generic SSRs and guidelines, and
e Common sense.

The list of preliminary hazards of the proposed system becomes the basis of the PHA and the
consideration and development of design alternatives. The PHL must be used as inputs to
proposed design alternatives and trade studies. As the design matures, the list is “scrubbed” to
eliminate those hazards that are not applicable for the proposed system, and to document and
categorize those hazards deemed to contain inherent (potential) safety risk.

Lessons learned information can be extracted from databases specifically established to
document lessons learned in design, manufacture, fabrication, test, or operation activities, or
actual mishap information from organizations such as the service safety agencies. Each hazard
that is identified should be recorded on the list and contain its source of reference.

C14 SAFETY-CRITICAL FUNCTIONS LIST

Although not identified in MIL-STD-882, the introduction of a Safety-Critical Functions List
(SCFL) historically became more important as specific process steps to perform software safety
tasks became more mature and defined. The design, code, test, IV&V, implementation, and
support of software code can become expensive and resource limited. Software code that
performs safety-critical functions requires an extensive protocol, or level of effort, within the
design, code, test, and support activities. This added structure, discipline, and level of effort, add
cost to the program and should be performed first on those modules of code that are most critical
from a safety perspective. Conversely, code developed with no identified inherent safety risk,
would require a lesser level of design, test, and verification protocol. By documenting the safety-
critical functions early in the concept exploration phase, it identifies those software functions or
modules that are safety-critical by definition.

The identification of the SCFL is a multi-discipline activity that is initiated by the safety
manager. Identification of the preliminary safety functions of the system requires inputs from
systems, design, safety, reliability engineering, project managers, and the user. It requires an
early assessment of the system concepts, specifications, requirements, and lessons learned.
Assessing the system design concepts includes analysis of:

e Operational functions,

* Maintenance and support functions,

e Test activities,

* Transportation and handling,

e Operator/maintainer personnel safety,
e Software/hardware interfaces,

e Software/human interfaces,

C-4

Software System Safety Handbook
Appendix C

* Environmental health and safety,
* Explosive constraints, and
* Product loss prevention.

Safety-critical functions identified should be documented, tracked, and matured as the design
matures. This is to say that a distinct safety-critical function in preliminary design maybe
completely eliminated in detailed design, or a function could be added to the preliminary list as
either the design matures, or customer requirements change.

The point of the SCFL is to ensure that software code, or modules of code that perform safety-
critical functions are defined and prioritized as safety-critical code/modules. This is based on
credible, system-level, functions that have been identified as safety-critical. The safety-critical
identifier on software establishes the design, code, test, and IV&V activities that must be
accomplished to ensure the software is safety risk minimized.

C.1.5 PRELIMINARY HAZARD ANALYSIS

The PHA activity is a safety engineering and software safety engineering function that is
performed to identify the hazards and their preliminary casual factors of the system in
development. The hazards are formally documented to include information regarding the
description of the hazard, casual factors, the effects of the hazard, and preliminary design
considerations for hazard control by mitigating each cause. Performing the analysis includes
assessing hazardous components, safety-related interfaces between subsystems, environmental
constraints, operation, test and support activities, emergency procedures, test and support
facilities, and safety-related equipment and safeguards. The PHA format is defined in DI-SAFT-
80101A of MIL-STD-882C. This DID also defines the format and contents of a// hazard analysis
reports. An example of a PHA hazard record is provided in Figure 4-24.

The analysis also provides an initial assessment of hazard severity and probability of occurrence.
The probability assessment at this point is usually subjective and qualitative.

To support the tasks and activities of a software safety effort, the “causes” of the root hazard
must be assessed and analyzed. These causes should be separated in four separate categories:

e Hardware initiated causes,

e Software initiated causes,

e Human error initiated causes, and

* Human error causes that were influenced by software input to the user/operator.

This categorization of causes assists in the separation and derivation of specific design
requirements that are attributed to software. Both software-initiated causes, and human error
causes influenced by software input must be adequately communicated to the systems engineers
and software engineers for the purpose of the identification of software design requirements to
preclude the initiation of the root hazard identified in the analysis.

C-5

Software System Safety Handbook
Appendix C

The PHA document itself is a living document that must be revised and updated as the system
design and development progresses. It becomes the input document and information for all other
hazard analyses performed on the system. This includes the SSHA, SHA, Health Hazard
Assessment (HHA), and O&SHA.

Cl1.6 SUBSYSTEM HAZARD ANALYSIS

The hazard analysis performed on individual subsystems of the (total) system is the SSHA. This
analysis is “launched” from the individual hazard records of the PHA which were identified as a
logically distinct portion of a subsystem. Although, the PHA is the starting point of the SSHA, it
must be only that - a starting point. The SSHA is a more in-depth analysis of the functional
relationships between components and equipment (this also includes the software) of the
subsystem. Areas of consideration in the analysis include performance, performance
degradation, functional failures, timing errors, design errors, or inadvertent functioning.

As previously stated, the SSHA is a more in-depth analysis than the PHA. This analysis begins
to provide the evidence of requirement implementation by matching hazard causal factors to
“what is” in the design to prove or disprove hazard mitigation. The information that must be
recorded in the SSHA include, but is not limited to, hazard description, all hazard causes
(hardware, software, human error, or software-influenced human error), hazard effect, and
derived requirements to either eliminate or risk-reduce the hazard by mitigating each causal
factor. The inverse of a hazard cause can usually result in a derived requirement. The analysis
should also define preliminary requirements for safety warning or control systems, protective
equipment, and procedures and training. Also of importance in the data record is the
documentation of design phase of the program, component(s) affected, component identification
per drawing number, initial hazard HRI (which includes probability and severity prior to
implementation of design requirements), and the record status (opened, closed, monitored,
deferred, etc.).

From a software safety perspective, the SSHA must define those hazards or failure modes that
are specifically caused by erroneous, incomplete or missing specifications (including control
software algorithm elements, interface inputs and outputs, and threshold numbers), software
inputs, or human error (influenced by software furnished information). These records must
furnish the basis for the derivation and identification of software requirements that eliminate or
minimize the safety risk associated with the hazard. It also must initiate resolution of how the
system, or subsystem, will react given the software error does occur. Fault resolution scenarios
must consider the reaction of the subsystem and/or system if a potential software error (failure
mode) becomes a reality. For example, if a potential error occurs does the system power down,
detect the error and correct it, go to a lesser operational state, fail soft, fail safe, fail operational,
fail catastrophic, or some combination of these.

C1.7 SYSTEM HAZARD ANALYSIS

The SHA provides documentary evidence of safety analyses of the subsystem interfaces and
system functional, physical, and zonal requirements. As the SSHA identifies the specific and
unique hazards of the subsystem, the SHA identifies those hazards introduced to the system by
the interfaces between subsystems, man/machine, and hardware/software. It assesses the entire

Software System Safety Handbook
Appendix C

system as a unit and the hazards and failure modes that could be introduced through system
physical integration and system functional integration.

Although interface identification criteria is not required or defined in the SSHA, it is to be hoped
that preliminary data is available, and provided by the SSHA analysis format to assist in a “first
cut” of the SHA. The SHA is accomplished later in the design life cycle (after PDR, and before
CDR) which increases the cost of design requirements that may be introduced as an output of this
analysis. Introducing new requirements this late in the development process also reduces the
possibility of completely eliminating the hazard through the implementation of design
requirements. It is therefore recommended that initial interface is considered as early as possible
in the PHA and SSHA phases of the safety analysis. Having this data in preliminary form allows
the maturation of the analysis in the SHA phase of the program to be timelier. An example of the
minimum information to be documented in an SSHA and SHA is provided in Figure C.2.

| HAZARD CONTROL RECORD page 1| HAZARD CONTROL RECORD pycgk 2

Record #: Initiation Date: Analysis Phase:
Hazard Title:

Design Phase: Subsystem:

Component: Component ID#:

Hazard Status Initial HRI:

Probability: Severity:

Functional Interface Hazards:

Physical Interface Hazards:

Zonal Interface Hazards:
Hazard Description:

Hazard Control Design Requirements:
Hazard Cause:

Hardware Design Hardware:

Software

Design Software:
Human Error

Software-Influenced Human Error Safety/Warning Devices:

Hazard Effect: Protective Equipment:

Procedures and/or Training:

Hazard Control Considerations:
Hazard Requirement Reference:

Figure C.2: SSHA & SHA Hazard Record Example

C.1.8 SAFETY REQUIREMENTS CRITERIA ANALYSIS

Periodically during the development activities, the requirements generated (generic), allocated, or
derived from the safety analysis must be communicated and delivered to the design engineering
function for both hardware and software. This is accomplished via the systems engineering
function for product development. System engineering is responsible for the assurance that the
system definition and design reflect requirements for all system elements to include equipment,
software, personnel, facilities, and data. Each functionally derived requirement is “tied” or
“traced” to a specific hazard record or multiple records. This helps communicate the requirement
rationale to those designers that do not understand the necessity or the intent of the requirement.

C-7

Software System Safety Handbook
Appendix C

If the safety manager has implemented a hazard record database for tracking hazards, it should
contain database fields for the purpose of the documentation of derived requirements for each
identified hazard and its related causes. If these requirements are documented in the database, it
should be relatively simple to produce a SRCA using the report generation function of the
database. The main point is that safety requirements will not be implemented in the design if
they are not delivered and communicated to the design engineers. If the design team does not
understand a unique requirement, it must be traced back to a specific hazard record for review
and discussion. At this point, two alternatives exist; first, the hazard record is incorrect based on
misconceptions in the design; or the hazard record is correct. If the first scenario is true, the
record can be corrected and the requirement changed, or conversely, the record is correct and the
requirements derived by the analysis remain valid. In either case, the necessary requirements are
adequately and efficiently communicated to those domain design groups that are responsible for
their implementation.

As previously stated, the safety engineers must be aware that the derivation of requirement to
eliminate a specific hazard may introduce a unique and separate hazard. Some procurement
activities will address this issue through a requirement for a “requirements hazard analysis.” This
analysis is for the purpose of insuring that requirements identified in the analysis process do not
introduce hazards as a byproduct of the initial analysis and requirements definition process.

C.19 SAFETY REQUIREMENTS VERIFICATION REPORT

A common misconception of system safety engineering is that the most important products
produced by the analysis is the hazard analysis reports (PHA, SSHA, SHA, HHA, and O&SHA).
This, however, is only partially correct. The primary product of system safety engineering
analysis is the identification and communication of requirements to either eliminate or reduce the
safety risk associated with the design, manufacture, fabrication, test, operation, and support of the
system. Once identified, these requirements must be verified to be necessary, complete, correct,
and testable for the system design. Not only is it the responsibility of the system safety function
to identify, document, track, and trace hazard mitigation requirements to the design, but also to
identify, document, participate in, or possibly perform, the verification activities. These

activities can be wide and varied according to the depth of importance communicated by program
management, design and systems engineering, and system safety. If a program is hindered by
limited resources, this verification may be as simple as having the design engineers review the
hazard records under their responsibility, verify that all entries are correct, and verify that the
designers have indeed incorporated all the derived requirements associated with the record. On
the other hand, the verification activities may be as complicated as initializing and analyzing
specific testing activities and analyzing test results; the physical checking of as-built drawings
and schematics; the physical checking of components and subsystems during manufacture; and/or
the physical checking of technical orders, procedures, and training documentation.

The Safety Requirements Verification Report formally provides the audit trail for the formal
closure of hazard records at the System Safety Group (SSG) meetings. This report is not a
mandatory requirement if the hazard tracking database format contains the necessary fields
documenting the evidence of safety requirement implementation (Figure C.3). The PM, before
closing a hazard record, must be assured that requirements functionally derived or identified via

C-8

Software System Safety Handbook
Appendix C

the hazard record have been incorporated and implemented. There must also be assurance that
generic SSRs have been adequately implemented. Those requirements not implemented must
also be identified in the assessment of residual risk and integrated in the “final HRI” of the
hazard record. In addition, this formal documentation is required information that must be
presented to the test and user organizations. They must be convinced that all identified hazards
and failure modes have been minimized to acceptable levels of safety risk prior to system-level

testing.
/ HAZARD CONTROL RECORD pacs s \

Hazard Requirements Validation & Verification: Hazard
Hardware V&V Results: Requirement
Software V&V Results: Vel'lﬁcatIOT'l
Documentation

Human Error V&V Results:

Safety/Warning Devices V&V Results:

Protective Equipment V&V Results:

Procedures and/or Training V&V Result:

Additional Remarks:

Close Out Date: Close Out HRI: Originator:

o J

Figure C.3: Hazard Requirement Verification Document Example

C.1.10 SAFETY ASSESSMENT REPORT

From the perspective of the PM, the SAR is one of the most important products that is produced
by the safety team. It documents the residual safety risks associated with the test, operations, and
support of the system. The SAR formally identifies all safety requirements not implemented (or
partially implemented), and those hazards that were risk minimized via the safety order of
precedence activities. In addition, it documents the ramifications of not proceeding further with
designing “out” the residual hazardous conditions of the system. The decision not to continue is
usually based upon the lack of financial resources, technological restrictions, or programmatic
decisions.

The SAR also helps to establish operational test scenario bounds and limits based upon residual
safety risk in subsystems and their interfaces. This assessment can assist the PM and the test
manager in critical decisions regarding the breadth and depth of initial testing. The analysis can

C-9

Software System Safety Handbook
Appendix C

identify which test functions and scenarios must be tested incrementally based on sound safety
data. Specific guidelines for the accomplishment of a safety assessment are documented in Task
301 of MIL-STD 882C, and DID DI-SAFT-80102A.

C.2 CONTRACTUAL DOCUMENTATION

C.21 STATEMENT OF OPERATIONAL NEED

A product life cycle begins with the Statement of Operational Need (SON), which is a product of
the Mission Area Analysis (MAA). The MAA identifies deficiencies and shortfalls in defense
capabilities or defines more effective ways of accomplishing existing tasks. The purpose of the
SON is “fo describe each need in operational terms relating to planned operations and support
concepts.” (AFR 57-1) This document will provide the software safety team with a definition of
operational need of the product and an appreciation of where the concept was originated (to
include assumptions).

Most SONs do net have specific or specified statements regarding design, manufacture,
fabrication, test, operational and support, or software safety. If they did, the planning, support,
and funding for system safety engineering would be a lot easier to secure in the initial phases of
the systems development. Since the SON will most likely be void of any safety-related
statement, it should be reviewed for the purpose of understanding the background, needs, desires,
requirements, and specifications of the ultimate system user. This helps in the identification of
scope, breadth, and depth of the SSP and software safety program, and an understanding of what
the user considers to be acceptable in terms of safety risk. With little (or no) verbiage regarding
safety in the SON, a communication link with the user (and customer if different from the user)
is essential.

C.22 REQUEST FOR PROPOSAL

Although not always addressed specifically, many modern-day RFPs include an “implied”
requirement for a system safety engineering program which may include software safety
activities. In today’s environment of software-intensive systems, an “implied” requirement is no
longer acceptable. The user must request in detail a specified SSP, applicable safety criteria,
definitions of acceptable risk, levels of required support, and anticipated deliverables required by
the customer.

The primary reason for detailed safety criteria in the RFP is for the establishment (and
documentation) of the defined scope and the level-of-effort for a SSP. The importance of this is
simple. It establishes for the management team, a design definition that can be accurately
planned, budgeted, and implemented. One of the biggest obstacles for most SSPs is the lack of
sufficient budget and program resources to adequately accomplish the system safety task in
sufficient detail. This is due to insufficient criteria detail in the RFP, SOW, and contract.
Without this detail, the developer may incorrectly bid the scope of the system safety and software
safety portion of the contract. This level of detail within the RFP is the responsibility of the user.

Planning at this stage of the program for the developer consists primarily of a dialog with the
customer to specifically identify those requirements or activities that they (the user) perceive to

C-10

Software System Safety Handbook
Appendix C

be essential for reducing the safety risk of software performing safety-critical functions. It is at
this point that the safety managers in conjunction with the software development manager assess
the specific SSRs to fully understand the customer desires needs, and requirements. It is to be
hoped that this is predicated on detailed safety criteria documented in the RFP. Once again,
dialog and communication are required by the developer with the customer to ensure that each
safety program requirement is specifically addressed in the proposal. A sample RFP statement
for safety is included in Appendix G.

C.23 CONTRACT

Specific contract implications regarding system safety and software safety engineering and
management is predicated on proposal language, type of contract, and specific contract
deliverables. The software safety team must ensure that all outside (the software safety team)
influences are assessed and analyzed for impact to the breadth and depth of the program. For
example, a development contract may be Cost-Plus-Award-Fee (CPAF). Specific performance
criteria of the safety and software team may be tied directly to the contract award fee formula. If
this is the case, the software safety team will be influenced by contractual language.
Additionally, the specifics of the contract deliverables regarding system safety criteria for the
program will also influence the details defined in the SSPP. The software safety team must
establish the program to meet the contract, and contractual deliverable requirements

C24 STATEMENT OF WORK

The program SOW, and its parent contract, is mandatory reading for the SWSE and the software
safety team members associated with the program. Planning and scoping the software safety
program, processes and tasks, and products to be produced are all predicated on the contract and
SOW. They define contractual requirements, scope of activity, and required deliverables. The
contract and SOW will become the “launch pad” for the development of the SSPP and either the
software safety appendix, or the SWSPP. If you recall, the SSPP defines how the developer will
meet all program objectives, accomplish/produce the required contract deliverables, and meet
scheduled milestone activities. When approved it is normally a contractually binding document.

Developing and coordinating the system safety paragraph contents of a SOW, in many instances,
is one of the most unplanned and uncoordinated activities that exists between the customer and
the supplier. On numerous occasions, the customer does not know specifically what they want,
so the SOW is intentionally vague, or conversely calls for all tasks of a regulatory standard (i.e.,
MIL-STD-882). In other instances the SOW is left vague as to “not stifle contractor innovation.”
The fact is that most system safety activities required by the SOW are not coordinated and agreed
upon by the contractor or the customer. This problem would be significantly minimized if
sufficient details were provided in the RFP. PMs and technical managers must realize that
specific criterion for a program’s breadth and depth can be adequately stated in a RFP and SOW
without dictating to the developer Zow to accomplish the specified activities.

Unfortunately, the RFP and SOW seldom establish the baseline criteria for an adequate SSP.
With this in mind, two facts must be considered. First, the SOW is usually an approved and
contractually binding document that defines the breadth of the safety work to be performed.
Second, it is usually the depth of the work to be performed that becomes the potential for

C-11

Software System Safety Handbook
Appendix C

disagreement. This is often predicated on the lack of specified criteria in contractual documents
and lack of allocated critical resources by program management to support the activities in
question. Planning for the system safety activities that will be required contractually should be
an activity initiated by the PA. It is the responsibility of the customer to understand the resource,
expertise, and schedule limitations and constraints of the contractor performing the safety
analysis. This knowledge can be useful in scoping the SOW requirements to ensure that a
practical program is accomplished which identifies, documents, tracks, and resolves the hazards
associated with the design, development, manufacture, test, and operation of a system. A well-
coordinated SOW safety paragraph should accurately define the depth of the SSP and define the
necessary contract deliverables. The depth of the system safety and software safety program can
be scoped in the contractual language if the customer adequately defines the criteria for the
following:

» The goals and objectives of the system safety design, test, and implementation effort,
* Technical and educational requirements of the system safety manager and engineers,

e The allocated “system” loss rate requirements to be allocated for the subsystem design
efforts,

* The specific category definitions pertaining to hazard probability and severity for the HRI
and the SHCM,

* The defined system safety engineering process and methods to be incorporated,

* The specific scope of effort and closeout criteria required for each category of HRI
hazards, and

* The required contractual safety deliverables, including acceptable format requirements.

For DOD procurements, current versions of both MIL-STD-882 and MIL-STD-498 should be
used in the preparation of the SOW software safety tasks, as shown in Figure C.4. While these
military standards may not be available in future years, their commercial counterpart should be
available for use. It must be understood that these two standards are very complementary in their
criteria for a software safety program. While MIL-STD-882 provides a “total system” approach
to system safety engineering, MIL-STD-498, Paragraph 4.2.4.1, ensures that a strategy is in place
for a software development to identify and resolve safety-critical CSCIs whose failure could lead
to a hazardous system state. The safety requirements in MIL-STD-498 are totally in concert with
the methods and philosophy of system safety engineering.

Although not recommended, if the contractor is tasked with providing a draft SOW as part of the
proposal activity, the customer (safety manager) should carefully review the proposed paragraphs
pertaining to system safety and resolve potential conflicts prior to the approval of the document.
Examples of SOW/SOO system safety paragraphs are provided in Appendix G.

C-12

Software System Safety Handbook
Appendix C

[Software Safety SOW Paragraphs \

MIL-STD MIL-STD
498 882C
software system
develop I safety L
J| I , J | _ Statement
Commercial Commercial

of

| | I Standard | 1 | | Standard |
| I Equivalent I I I Equivalen Work
1 | -_—

Figure C.4: Software Safety SOW Paragraphs

C.25 SYSTEM AND PRODUCT SPECIFICATION

The system specification identifies the technical and mission performance requirements of the
product to be produced. It allocates requirements to functional areas, documents design
constraints, and defines the interfaces between or among the functional areas. [DSMC, 1990]
The system specification must be thoroughly reviewed by the safety manager and the software
safety team members to ensure those physical and functional specifications are completely
understood. This will assist in the identification and scope (breadth and depth) of the analysis to
be performed. It also provides an understanding of the technologies involved, the magnitude of
the managerial and technical effort, assumptions, limitations, and engineering challenges, and the
inherent safety risk of the program.

The system specification should identify and document any quantified safety-critical
requirements that must be addressed. As an example, an aircraft development program may have
a system specification for “vehicle loss rate” of 1x10°°. It is the responsibility of the safety
manager, in concert with design engineering, to allocate this loss rate to each effected subsystem.
Each major subsystem would be allocated a “portion” of the loss rate requirement, such that, any
design activity that causes a negative impact to the loss rate allocation would be “flagged” and
resolved. The safety and engineering leads are required then, to track how close each design
activity is to their vehicle loss rate allocation. If each design team meets, or exceeds, their
allocation, the aircraft will meet its design specification. An interesting side note to this example
is that Air Force accident records indicate that, in reality, the vehicle loss rate of operational
aircraft is an order of magnitude less than the vehicle loss rate from which the aircraft was
originally designed.

As one can see, there is information in the system specification that will influence the methods,
techniques, and activities of the system safety and software safety engineering teams. The SSPP
and/or SWSPP must reflect specific activities to meet the defined requirements of the system and
user specifications.

C-13

Software System Safety Handbook
Appendix C

C.2.6 SYSTEM AND SUBSYSTEM REQUIREMENTS

Another essential set of documents that must be reviewed by the system safety manager and
engineers is the initial requirement documentation. In some instances, these initial requirements
are delivered with the RFP, or they can be derived as a joint activity between the developer and
the customer. Regardless, the knowledge and understanding of the initial system and subsystem
requirements allow the safety engineers to begin the activities associated with the PHL and the
PHA. This understanding allows for a greater fidelity in the initial analysis and reduces the time
required in assessing design concepts that may not be in the design at PDR.

For the preliminary software design activities, the generic SSRs and guidelines must be a part of
the initial requirements. An example of these preliminary (generic) requirements and guidelines
are provided in Appendix D. This list, or similar lists, must be thoroughly reviewed, analyzed,
and only those that are deemed appropriate provided to the software design team.

C.3 PLANNING INTERFACES

C.3.1 ENGINEERING MANAGEMENT

The lead engineer, or engineering manager, is pivotal in ensuring that each subsystem, system,
interface, or support engineer provides the required support to the system safety team. This
support must be timely to support the analyses, contractual deliverables, and schedule milestones
of the contract and the safety SOW. Also, the engineering support must be timely to effectively
influence the design, development, and test of the system, each subsystem, and their associated
interfaces. The engineering manager has direct control over the allocation of the engineering
resources (including the engineers themselves) for the direct support of system safety engineering
analyses. Without the support of the lead engineer, analyses performed by the safety team would
have to be based on “best guess” assumptions and inaccurate engineering data and information.
Engineering Management:

* Coordinates the activities of the supporting technical disciplines,

* Manages technical resource allocation,

* Provides technical input to the PM,

* Defines, reviews, and comments on technical adequacy of safety analyses, and

* Ensures that safety is an integral part of system engineering and is allocated sufficient
resources to conduct analyses.

C.3.2 DESIGN ENGINEERING

The actual hardware and software design engineers must rely on the completeness and
correctness of requirements derived by support functions such as safety, reliability,
maintainability, and quality. The derivation of these requirements cannot be provided from a
vacuum (i.e., a lone analyst producing requirements without understanding the functional and
physical interfaces of the system). Therefore, design engineers are also dependent on the validity

C-14

Software System Safety Handbook
Appendix C

and fidelity of the system safety process to produce credible requirements. Safety-specific
requirements are obtained from two sources; first, generic safety requirements and guidelines
(see Appendix D) and second, derived requirements produced through hazard analysis and failure
mode analysis. Generic safety requirements are normally derivatives of lessons learned and
requirements identified on similar systems. Regardless of the source of the safety requirement, it
is essential that the design engineer completely understand the intent of each requirement and the
ramifications of not implementing that requirement in the design.

Correctness, completeness, and testability are also mandatory attributes of safety requirements.
The correctness and completeness of safety requirements, in most instances, are predicated on the
communication of credible hazards and failure modes to the designer of a particular subsystem.
Once the designer understands the hazard, specific requirements to eliminate or control the
hazard are derived in concert by the safety engineer and design engineer.

The ultimate product of a system safety engineering activity is the elimination and/or control of
the risk associated with hazards and failure modes. The incorporation and implementation of
safety-specific design requirements accomplish this. Design engineering must have intimate
knowledge of the system safety, and software safety activities and the intent of the safety
requirements derived. The knowledge of the safety processes and the intent of the requirements
by the design team establish credibility for the safety engineer to actively perform within the
design function.

C.3.3 SYSTEMS ENGINEERING
Systems Engineering is defined as:

“An interdisciplinary approach to evolve and verify an integrated and optimally balanced set of
product and process designs that satisfy user needs and provide information for management
decision making.” [MIL-STD-499B Draft]

“Systems engineering, by definition, involves design and management of a total system
comprised of both hardware and software. Hardware and software are given equal weight in
analysis, tradeoffs, and engineering methodology. In the past, the software portion was viewed
as a subsidiary, follow-on activity. The new focus in systems engineering is to treat both
software and hardware concurrently in an integrated manner. At the point in the system design
where the hardware and software components are addressed separately, modern engineering
concepts and practices must be employed for software, the same as hardware.” [Software
Technology Support Center (STSC) 1, 1994]

The overall objectives of systems engineering, [DSMC 1990], are to perform the following:

* Ensure that system definition and design reflects requirements for all system elements:
equipment, software, personnel, facilities, and data,

* Integrate technical efforts of the design team specialists to produce an optimally balanced
design,

C-15

Software System Safety Handbook
Appendix C

* Provide a comprehensive indentured framework of system requirements for use as
performance, design, interface, support, production, and test criteria,

* Provide source data for development of technical plans and contract work statements,

* Provide a system framework for logistic analysis, ILS trade studies, and logistic
documentation,

* Provide a system framework for production engineering analysis, producibility trade
studies, and production manufacturing documentation, and

* Ensure that life cycle cost consideration and requirements are fully considered in all
phases of the design process.

Each of the preceding is important to system safety engineering and has the potential, if not
accomplished, to impact the overall safety of the system in development. Ultimately, system
engineering has the responsibility for developing and incorporating all design requirements that
meet the system operational specifications. This includes the safety-specific requirements for
hardware, software, and human interfaces. Systems engineering must be assured that system
safety has identified and implemented a sound approach for identifying and resolving system
hazards and failure modes. A systems engineering approach supports system safety engineering
and the MIL-STD-882 safety precedence to design for minimum risk

Systems engineering must be in agreement with the processes and methods of the safety engineer
to ensure safety requirements are incorporated in the design of the system. This process must
have the ability to efficiently identify, document, track, trace, test, and validate requirements
which reduce the safety risk of the system.

C34 SOFTWARE DEVELOPMENT

The software engineering/development interface is one of the most critical interfaces to be
cultivated for a successful software safety engineering activity. The software engineering team
must understand the need associated with the analysis and review tasks of system safety
engineering. They must also comprehend the methods to be used and the utility and products of
the methods in the fulfillment of the software safety tasks. This interface is new to most software
developers. Although they usually understand the necessity of controlling the safety risk of
software performing in safety-critical systems, their view of system safety engineering principles
is somewhat limited. It the responsibility of the SSS Team to assess the software development
acquisition process and determine when, where, and how to be most effective in tracing SSRs to
test. The software engineering team must support the SSS Team by allocating specific personnel
to the team to assist in the safety activities. This usually consists of personnel that can address
software design, code, test, [IV&V, CM, and quality control (QC) functions.

C.3.5 INTEGRATED LOGISTICS SUPPORT

An inherent difference between hardware support and software support is that hardware support
is based on the finished product, while software support must mimic the development process.
Hardware support must use the tools necessary to repair a finished product, not tools required to

C-16

Software System Safety Handbook
Appendix C

build one. Software support, on the other hand, must use tools functionally identical to those
used during the development process.

Life cycle support strategies typically span the support spectrum from sole source contractor to
full government organic, with each strategy presenting different advantages and disadvantages
needing evaluation. A high level IPT consisting of the operational user, the PEO, and the
acquisition agent must make the support decision prior to Milestone I. This focuses attention on
the software support process and allows the acquisition agent to begin planning for it earlier in
the program.

The Computer Resources Integrated Support Document (CRISD) is the key document for
software support. It determines facility requirements, specifies equipment and required support
software, and lists personnel number, skills, and required training. It contains information crucial
to the establishment of the Software Engineering Environment (SEE), its functionality, and

limitations. It is a management tool that accurately characterizes the SEE's evolution over time.
[STSC, 1996]

From a software safety perspective, the software support environment must be aware of the
safety implications of the software to be maintained and supported in the operational
environment. Safety-critical functions and their relationships to controlling software must be
fully defined. That is, any software code that directs, functions, or controls safety-critical
functions of the system must be fully defined and communicated in the software support
documentation. Any software ECP or maintenance support function pertaining to safety-critical
modules of code must be thoroughly reviewed by the SSS Team prior to implementation.

C.3.6 OTHER ENGINEERING SUPPORT

Each program development will have unique differences and specific interface requirements. As
an example, a potential customer may require that all system hazard probabilities be quantified to
a specific confidence level, and that no qualitative engineering estimates will be acceptable. This
requirement forces the safety engineering analysis to be heavily predicated on the outputs of
reliability engineering. Although interfaces with reliability engineering are common place for
most DOD procurements, the example demonstrates the necessity of cultivating programmatic
and technical interfaces based on contractual, technical, and programmatic obligations. Other
technical interface examples may include, but are not limited to, human factors, QA, reliability
engineering, supportability, maintainability, survivability, test and evaluation, IV&V and ILS.

Planning for, and securing agreement with, the managerial and technical interface precludes the
necessity of trying to “cram” it into defined processes at a later date. Each program is unique and
presents planning challenges and peculiar interfaces.

C.4 MEETINGS AND REVIEWS

C41 PROGRAM MANAGEMENT REVIEWS

Program Management Reviews (PMR) are normally set up on a routine scheduled basis to allow
the PM to obtain an update of program status. The update will consist of the review of

Software System Safety Handbook
Appendix C

significant events since the previous PMR short-term and long-term schedules, financial reports
and budgeting forecasts, and technical contributions and limitations in design. Timely and valid
inputs to the PMR provide the PM, in concert with other key program individuals, the
information necessary to make informed decisions that affect the program. This may include the
allocation of critical resources. System safety may, or may not, have briefing items on the PMR
agenda. This would be predicated on whether the PM/director specifically requires the
presentation of the current status of the safety program, and whether safety issues should be
raised to this decision-making level. Caution should be given at this point to only raise safety
issues to this level of program management that is deemed essential to resolve an issue of a
critical nature (e.g., resolution of an important safety issue could not be attained at any other
lower level of technical or managerial support in the time required to solve the problem). It is
recommended that the safety manager attend the PMRs for programmatic visibility and to keep
abreast of program milestones and limitations as well as technical contributions and limitations.

C4.2 INTEGRATED PRODUCT TEAM MEETINGS

The IPT is the team of individuals that ensures an Integrated Product Development (IPD). “IPD
is a philosophy that systematically employs a teaming of functional disciplines to integrate and
concurrently apply all necessary processes to produce an effective and efficient product that
satisfies customer’s needs.””” It applies to the entire life cycle of a product.

The IPT provides a technical-managerial framework for a multi-disciplinary team to define the
product. IPT emphasizes up-front requirement definition, trade-off studies, and the
establishment of a change control process for use throughout the entire life cycle. [STSC
#1,1994] From a system safety perspective, IPTs effect how the processes defined in a TEMP are
integrated for the development and support required by safety throughout the project. This
includes special considerations, methods, and techniques defined by IPT members and
supporting technical disciplines.

C4.3 SYSTEM REQUIREMENTS REVIEWS

System Requirements Reviews are normally conducted during the concept exploration or
demonstration/validation phase of a program to ensure that system level functional analysis is
relatively mature and that system-level requirements have been allocated. The purpose is to
ensure system requirements have been completely and correctly identified, and that mutual
agreement is reached between the developer and the customer on system requirements.
Particular emphasis is placed on ensuring that adequate consideration has been given to logistic
support, safety, software, test, and production constraints.

Primary documents used in this review consist of the documentation products of the system
requirement allocation process. This includes functional analysis, trade studies, functional flow
block diagrams, requirement allocation sheets, and the requirements allocation reports from other
disciplines. This includes disciplines as reliability, supportability, maintainability, human
factors, and system safety.

> AFMC Manual, Acquisition Management Acquisition Logistics Management, 19 January
1995 (DRAFT)

Software System Safety Handbook
Appendix C

The system safety manager must assure that the safety requirements have been thoroughly
captured and that they cover known hazards. The list of known (or suspected) hazards from the
PHL or PHA should be used as a guide to check against each and every system/subsystem
requirement. For safety verification of new requirements, the system/subsystem requirements
must then be checked individually to ensure that new hazards have not been introduced.
Requirements should be traceable to systems, subsystems and their respective interfaces (i.e.,
human/machine, hardware/software, and system/environment) as well as to specific
system/subsystems hazards and failure modes. Traceability of allocated requirements to the
capability of the system to meet the mission need and program objectives within planned
resource constraints must be demonstrated by correlation of technical and cost information.
[DSMC 1990]

It is at this time that requirements considered safety-critical be already defined and documented.
A formal method to flag these requirements in documentation must be in place and any attempt
to change or modify these requirements must be limited. This documentation process must
include a check-and-balance that notifies the safety manager if safety-critical functions or
requirements are considered for change, modification, or elimination.

C44 SYSTEM/SUBSYSTEM DESIGN REVIEWS

The System Design Review (SDR) is one of the final activities of the Demonstration/Validation
phase of the program and thus, becomes the initial review of the Engineering/Manufacturing
Development (EMD) phase. The purpose of the SDR is to assess and evaluate the optimization,
traceability, correlation, completeness, and risk of the system level design that fulfills the system
functional baseline requirements. The review assesses and evaluates total system requirements
for hardware, software, facilities, personnel, and preliminary logistic support. This review also
assesses the systems engineering activities that help establish the products that define the system.
These products include trade studies, functional analysis and allocation, risk analysis, mission
requirements, manufacturing methods and processes, system effectiveness, integrated test
planning, and configuration control.

C4.5 PRELIMINARY DESIGN REVIEW

PDRs are normally conducted on each hardware and software Configuration Item (CI) (or
functionally grouped Cls), after top-level design efforts are complete and prior to the start of
detailed design. Usually, the PDR is held after the approval of the development specifications
and also prior to system level reviews. The review focuses on technical risk, preliminary design
(including drawings) of system elements, and traceability of technical requirements. Specific
documentation for CI reviews include development specifications, trade studies supporting
preliminary design, layout drawings, engineering analysis (including safety hazard analysis,
human engineering, failure modes and effects analysis, and ILS), interface requirements, mock-
ups and prototypes, and computer software top-level design, and software test planning. Special
attention is given to interface documentation, high-risk areas, long lead-time procurement, and
system level trade studies.

The safety engineer must provide to the PDR process:

Software System Safety Handbook

Appendix C
* The generic requirements and guidelines which were allocated to the system functional
baseline,
e The SCFL,

* Results of any safety-related trade studies,
* The specific requirements derived through the PHA and PHL, and

* The specific requirements derived through the initial efforts of the SSHA, SHA and the
O&SHA.

The primary focus of the safety team is to ensure that the generic and the specific derived
requirements are documented in the requirements specification, communicated to the appropriate
design function, and the safety intent of each is adequately displayed in the proposed design. The
primary output of the PDR is an assurance that safety-specific requirements (and their intent) are
being adequately implemented in the design. This assurance is provided is a two-way traceability
of requirements to specific hazards and failure modes, and to the design itself.

C4.6 CRITICAL DESIGN REVIEW

The CDR is conducted for each hardware and software CI before release of the design for
manufacturing, fabrication, and configuration control. For software, the CDR is conducted prior
to coding and preliminary and informal software testing. The CDR discloses the detailed design
of each CI as a draft product specification and related engineering drawings. The design
becomes the basis for final production planning and initial fabrication. In the case of software,
the completion of the CDR initiates the development of source and object code. Specific review
items of a CDR include; detailed engineering drawings, interface control drawings, prototype
hardware, manufacturing plans and the QA plans.

The safety engineer must provide to the CDR process:

* All safety specific requirements derived from the safety analyses activities. This to
include trade studies, functional and physical analyses, and PHA activities,

* All generic safety requirements and guidelines that were communicated to the design
team during initial requirement allocations,

e The finalized SCFL, and

* All safety-specific testing requirements to verify the implementation of safety
requirements in the design.

The CDR provides the evidence to the safety engineer that the design meets the goals and
objectives of the SSP and that the designers have implemented each safety requirement in the
final design. An approved CDR normally places the design under formal configuration control.

The safety team must leave the CDR with:

* Assurance of requirements traceability from analysis to design,

C-20

Software System Safety Handbook
Appendix C

* Evidence that the final design meets the goals and objectives of the SSPP.

* Evidence that safety design requirements are verifiable, including requirements that must
be verified through testing, and

* Evidence (quantifiable, if practical) of safety risk residual in the design.

C4.7 TEST READINESS REVIEW

The TRR is a formal review of the developer’s readiness to proceed with CI testing. On software
developments, it is the readiness to begin CSCI level of that specific CSCI. The TRR shall
attempt to assure that the safety requirements have been properly built into the system/subsystem,
and that safety test procedures are complete and mature. It also ensures that residual safety risk is
defined and understood by program management and engineering. Additionally, the TRR
verifies that all of the system safety functionality and requirements have been incorporated
through verification methods.

Another safety aspect of the TRR is the actual safety implications of the test itself. There are
usually greater safety implications on the test of hardware systems as compared to the testing of
software CSCIs and CSUs. Safety inputs to the TRR include:

» Safety analysis of the test itself,

e GO, NO-GO test criteria,

* Emergency test shut-down procedures,
* Emergency response procedures, and

e Test success or failure criteria.

If the specific test is for the verification of safety requirements, safety inputs to the TRR must
also include:

* Documentation of the safety requirements to be verified during the test activities,

* Credible “normal” and credible “abnormal” parameters of test inputs,

» Expected response to normal and abnormal test parameters and inputs,

* Methodology to document test outputs and results for data reduction and analysis, and
* Methodology to determine test success or failure.

To support the TRR for embedded software programs, the safety manager must verify the
traceability of safety requirements between system hazards and failure modes, and specific
modules of code. Failure to identify the hazard-to-requirement will frustrate the ability to ensure
that a hazard has been adequately mitigated until the safety test is run or test results are reviewed.
This could result in software that does not contain adequate safety control for further testing or

C-21

Software System Safety Handbook
Appendix C

actual delivery. Further possible ramifications include a requirement to re-engineer the code
(influencing cost and schedule risks), or result in unknown residual safety risk.

C4.8 FUNCTIONAL CONFIGURATION AUDIT

The objective of the Functional Configuration Audit (FCA) is to verify that the CIs actual
performance complies with the hardware and software development interface requirement
specifications. The hardware and software performance is verified by test data in accordance
with its functional and allocated configuration. FCAs on complex Cls may be performed on an
incremental basis, however, it must be performed prior to release of the configuration to a
production activity.

The safety team must provide all functional safety requirements and functional interface
requirements recommended for configuration audit. These requirements must be prioritized for
safety, and should include first, those that influence safety-critical functions. The safety team
must ensure that the configuration verifies the implementation of the safety design requirements
and that those requiring verification have indeed been verified. Verification of safety
requirements must be traceable throughout the systems functional configuration and to the hazard
record.

For software specifically, agreement is reached on the validity and completeness of the Software
Test Reports. The FCA process provides technical assurance that the software safely performs
the functions against respective CSCI requirements and operational and support documentation.

C49 PHYSICAL CONFIGURATION AUDIT

The Physical Configuration Audit (PCA) is the formal examination of the “as-built” version of
the configuration item against the specification documentation that established the product
baseline. Upon approval of the PCA activity, the CI is placed under formal CM control. The
PCA also establishes the test and QA acceptance requirements and criteria for production units.
The PCA process ensures that a detailed audit is performed on documentation associated with
engineering drawings, specifications, technical data, and test results. On complex Cls the PCA
may be accomplished in three phases; review of the production baseline; operational audit; and
customer acceptance of the product baseline.

As with a PCA of hardware, the PCA for software is also a formal technical examination of the
as-built product against its design. The design may include attributes that may not be customer
requirements. If this situation exists, these attributes must also be assessed from a system safety
perspective. The requirements from the SSHA and other software safety analyses (to include
physical interface requirements) will be compared with the closure of software hazards as a result
of design. Test results will be assessed to ensure that requirements are verified. In addition, the
implemented design will be compared to as-built code documentation to verify that it has not
been altered after it was tested (except for configuration control changes).

From a safety perspective, the most effective manner to conduct the audit is to target critical
safety requirements. It is highly recommended that the PCA auditors choose Category 1 and
Category 2 hazards to verify “as-built” safety of the particular CI. It should be noted that the

C-22

Software System Safety Handbook
Appendix C

design, control, and test of safety requirements often involve the most complex, and fault tolerant
code and architectures. As a consequence, they are often performed late in the testing schedule,
giving a clear picture of the CI status.

C.5 WORKING GROUPS

C.51 SYSTEM SAFETY WORKING GROUP

The SSWG consists of individuals and expertise to discuss, develop, and present solutions for
unresolved safety problems to program management or design engineering. They investigate
engineering problem areas assigned by the SSG and proposed alternative design solutions to
minimize safety risk. The requirement to have a SSWG is predicated on the need to resolve
programmatic or technical issues. The SSWG charter should describe the intent and workings of
the SSWG and the relationships to program management, design engineering, support functions,
test agencies, and field activities.

The SSWG assists the safety manager in achieving the system safety and software safety
objectives of the SSMP. To prepare for a SSWG, the safety manager for the development
organization must develop a working group agenda from an itemized list of issues to be
discussed. Also of importance, is the programmatic and technical support required for the
meeting. The safety manager must ensure that the appropriate individuals are invited to the
working group meeting and have had ample time to prepare to meet the objectives of the agenda.

The results of the SSWG are formally documented in the form of meeting minutes. The minutes
should include a list of attendees the final agenda, copies of support documentation (including
vu-graphs), documented resolutions, agreements, and recommendations to program management
or engineering, and allocated action items.

C.5.2 SOFTWARE SYSTEM SAFETY WORKING GROUP

The Software System Safety Working Group (SwWSSWG) is chaired by the software safety point
of contact and may be co-chaired by the PA’s PFS or SSPM. The SWSSWG is often the primary
means of communication between the PA and the developer’s software safety program. To be
effective, the roles and responsibilities of the SWSSWG members, the overall authority and
responsibilities of the SWSSG, and the procedures and processes for operation of the SWSSWG,
must be clearly defined. Each SWSSWG must have a charter. This charter is generally appended
to the SSPP. The charter describes:

* The authority and responsibilities of the safety and software safety points of contact,
* The roles and responsibilities of the membership,

* The processes to be used by the SWSSWG for accepting HARs and entering them into the
hazard log,

* The processes and procedures for risk resolution and acceptance,

* The expected meeting schedule and frequency, and

C-23

Software System Safety Handbook
Appendix C

* The process for closure of hazards for which the SWSSWG has closure authority.

The SWSSWG schedule includes periodic meetings, meetings prior to major program milestones,
and splinter meetings as required to fully address the software safety issues

The SWSSWG is an IPT that is responsible for oversight and management of the software safety
program. Therefore, membership obviously includes the:

» The safety principals [safety point of contact, PA PFS, safety PM(s)],
* System safety engineering,

* Software safety engineering,

* Systems Engineering,

* Software Engineering,

* Software Testing,

e IV&V,
* SQA,
e SCM, and

e Human Factors Engineering.

To be most effective, the SWSSWG must include representatives from the user community. A
core group of the SWSSWG, including the safety Points of Contact (POC), the PA PFS, system
engineering, software engineering and the user community should be designated voting members
of the IPT if a voting structure is used for decisions making. Ideally, however, all decisions
should be by consensus.

The DA’s software safety POC chairs or co-chairs (with the PA’s PFS for software safety) all
formal SWSSWG meetings. The chair, co-chair or a designated secretariat prepares an agenda
for each meeting. The agenda ensures that all members, including technical advisors, have time
to address topics of concern. Any member of the IPT may request the addition of agenda items.
The chair or secretariat forwards the agenda to all IPT members at least a week in advance of the
meeting. Members wishing to include additional agenda items may contact the secretariat with
the request prior to the meeting, such that the agenda presented at the opening of the meeting
includes their topics. The chair must maintain control of the meeting to ensure that side
discussions and topics not germane to the software safety program do not prevent accomplishing
useful work. However, the key word in the concept of an IPT is “Team”: the group should work
as a team and not be unnecessarily constrained. The DA must make provisions for preparing and
distributing meeting minutes. The meeting minutes formally record the results of the meeting
including any decisions made and the rationale behind the decisions. These decisions may
include the selection of a hazard resolution or decisions regarding hazard closure and the
engineering rationale used to arrive at that decision. The chair or secretariat distributes the
meeting minutes to all [IPT members and retains copies in the SDL.

C-24

Software System Safety Handbook
Appendix C

C.5.3 TEST INTEGRATION WORKING GROUP/TEST PLANNING WORKING
GROUP

The Test Integration Working Group and the Test Planning Working Group may be combined on
smaller programs. They exist to ensure that planning is being accomplished on the program to
adequately provide test activities for developmental test, requirements verification test, and
operational test. Developmental testing verifies the design concepts, configurations, and
requirements meet the user and system specification. Operational and support testing verifies
that the systems and its related components can be operated and maintained with the support
concept of the user. This includes the utilization of user personnel in operating the system and
supporting the system with the skill levels defined in the user specification. Operational testing
verifies that the system operates as intended.

The safety input to test and integration planning is composed of the assurance that hazards and
failure modes identified in design, manufacture, and fabrication have been either eliminated
and/or controlled. Those hazards that have not been completely eliminated, and only controlled
to specific levels, must be communicated to the test agency along with the assessment of residual
safety risk. This allows the test agency to bound the parameters of the testing in conjunction with
the safety risk exposure to the asset, the test site, the environment, and test personnel. Test
planning must also include those safety-significant requirements that require verification through
the test itself.

C54 COMPUTER RESOURCES WORKING GROUP

The Computer Resources Working Group (CRWG) is formed as early as possible during the
concept exploration phase but no later than Milestone 1?°. The CRWG provides advice to the
PM regarding the software support concept, computer resources policy, plans, procedures,
standards, the TEMP, IV&V, and other development risk controls, all of which are influenced by
the level of safety risk. The CRWG also contributes to the program’s configuration control with
external groups and interfaces. The CRWG includes the implementing agency, using agency,
support agencies, and any other DOD agency.

From a system safety perspective, participation on the CRWG is essential to provide and ensure
that software safety processes are included in all policies, procedures, and processes of the
software development team. This ensures that safety-specific software requirements are
integrated into the software design, code and test activities. The CRWG must recognize the
importance of the safety input to the design and test functions of developing safety-critical
software.

C.5.5 INTERFACE CONTROL WORKING GROUP

The Interface Control Working Group (ICWGQG) is one of the program office’s controls over all
external interfaces that effect the system under development.”” The government ICWG has
purview over areas external to the product such as interoperability and operational issues. The

26 Mission Critical Computer Resources Management Guide, DSMC, Ft. Belvoir, VA
" ibid., pg. 10-5

C-25

Software System Safety Handbook
Appendix C

ICWG works in coordination with the CRWG. The ICWG coordinates current and proposed
software and hardware interfaces.

The developer’s ICWG is, at first, most responsible for the software and hardware interfaces of
the system under development and transfers this responsibility to the acquirer as the time for
delivery of the software approaches. It is the ICWG that coordinates and signs off the interface
requirements between developers and associate developers. All changes are reviewed by the
ICWG before submittal to the acquirer’s ICWG.

Software safety identifications and annotations to each change must accompany the initial
interface coordination and any subsequent change to an interface to ensure preservation of safety
and reduce residual safety risk.

C.6 RESOURCE ALLOCATION

C.6.1 SAFETY PERSONNEL

Once the specific tasks are identified in accordance with the contract and SOW, the safety
manager must estimate the number of person-months that will be required to perform the safety
tasks. This estimate will be based on the breadth and depth of the analysis to be performed, the
number of contractual deliverables, and the funds obligated to perform the tasks. If the estimate
of person-hours exceeds the allocated budget, the prioritized tasks that will be eliminated must be
communicated to program management to ensure that they are in agreement with the decisions
made, and that these discussion and agreements are fully documented. Conversely, if program
management cannot agree with level of effort to be performed (according to the budget), they
must commit to the allocation of supplemental resources to ensure the level of effort necessary to
obtain the safety levels contractually required. Once again, specific safety tasks must be
prioritized and scoped (breadth and depth) to provide program management (and the customer)
with enough information to make informed decisions regarding the level of safety effort for the
program.

Desired minimum qualifications of personnel assigned to perform the software safety portion of
the system safety task are as follows:

* Undergraduate degree in engineering or technically related subject (i.e., chemistry,
physics, mathematics, engineering technology, industrial technology or computer
science),

* System safety management course,

* System safety analysis course,

» Software acquisition and development course,
* Systems engineering course, and

* Two to five years experience in system safety engineering or management.

C-26

Software System Safety Handbook
Appendix C

C.6.2 FUNDING

The funds obligated to the program system safety effort must be sufficient to identify, document,
and trace system safety requirements to either eliminate or control hazards and failure modes to
an acceptable level of safety risk. Paragraph C.2.4 communicates the benefits of prioritizing
tasks and program requirements for the purpose of allocating personnel to perform the safety
tasks in accordance with the contract and the SOW. Sufficient funds must be allocated for the
performance of system safety engineering which meet user and test requirements and
specifications. Funding limitations and shortfalls must be communicated to the PM for
resolution. Informed decisions by the PM can only be made if system safety processes, tasks, and
deliverables are documented and prioritized in detail. This will help facilitate the allocation of
funds to the program, or identify the managerial, economical, technical, and safety risk of
underfunding the program. In addition, the cost-benefit and technical ramifications of decisions
can be formally documented to provide a detailed audit trail for the customer.

C.6.3 SAFETY SCHEDULES AND MILESTONES

The planning and management of a successful SSP is supplemented by the safety engineering
and management program schedule. The schedule should include near-term and long-term
events, milestones, and contractual deliverables. The schedule should also reflect the system
safety management and engineering tasks that are required for each lifecycle phase of the
program and to support DOD milestone decisions. Also of importance, is specific safety data
that is required to support special safety boards that may be required for compliance and
certification purposes. Examples include, but are not limited to, FAA certification, DOD
Explosive Safety Board, DNS Nuclear Certification, and the Non-Nuclear Munitions Safety
Board. Each event, deliverable, and milestone should be tracked to ensure suspense and safety
analysis activities are timely in the development process to help facilitate cost-effective design
solutions to meet the desired safety specifications of the system development activity and the
ultimate customer.

Planning for the SSP must include the allocation of resources to support travel of safety
management and engineers. The contractual obligations of the SOW in concert with the
processes stated in the program plans (Paragraph C.2.4) and the required support of program
meetings (Paragraph C.4) dictate the scope of safety involvement. With the limited funds and
resources of today’s programs, the system safety manager must determine and prioritize the level
of support that will be allocated to program meetings and reviews. The number of meetings that
require support, the number of safety personnel that are scheduled to attend, and the physical
location of the meetings must be assessed against the budgeted travel allocations for the safety
function. This activity (resource allocation) becomes complicated if priorities are not established
“up-front” on the determination of meetings to support. Once priorities are established, meetings
that cannot be supported due to budget constraints can be communicated to program management
for the purpose of concurrence, or the reallocation of resources with program management
direction.

C-27

Software System Safety Handbook
Appendix C

C.6.4 SAFETY TOOLS AND TRAINING

Planning the system safety engineering and management activities of a program should include
the specific tools and training that are required for the accomplishment of the program.
Individual training requirements should be identified for each member of the safety team that is
specifically required for program-specific tasks and for the personal and professional growth of
the analyst. Once the required training is identified, planning must be accomplished to secure
funding and to inject the training into the program schedule where most appropriate for impact
minimization.

Specific tools that may be required to support the system safety activities are, in many instances,
program specific. Examples may include a fault-tree analysis program to identify single-point
failures and to quantify their probability of occurrence, or a sneak-circuit analysis tool for sneak-
circuit analysis. As wide and varied as individual or programmatic needs are, there is one
specific requirement that must be budgeted for a safety database. A safety database is required to
provide the audit trail necessary for the identification, documentation, tracking, and resolution of
hazards and failure modes in the design, development, test and operation of the system. This
database should be “flexible” enough to document the derived requirements of the hazards
analysis, create specific reports for design engineering, program management and the customer,
and document the traceability and verification methodology for the requirements implemented in
the design of the system. Traceability includes the functional, physical, and/or logical link
between the requirements, the hazard it was derived from, testing requirements to verify the
requirement and the specific modules of code that are affected. In addition, the safety database
must be able to store the necessary information normally included in HARs specified by MIL-
STD-882 and their associated DIDs. Examples of these reports include the PHA, SSHA, SHA,
O&SHA, and SARs.

Supplemental tools that may be required for the performance of software safety tasks include
software timing analysis tools, CASE tools, functional or data flow analysis tools, or
requirements traceability tools. The safety manager must discuss the requirements for software-
and safety-related tools with the software development manager to determine their possible
availability from within the program.

C.6.5 REQUIRED HARDWARE AND SOFTWARE

Specific hardware and software resources should be identified when planning for the
accomplishment of the SSP. Specific tools may be program dependent to include such things as
emulators, models and simulations, requirement verification tools, and/or timing/state analysis
tools. The expenditures for required hardware and software must be identified, and planned for,
up-front (as possible) on the program. Hardware includes the necessary computer hardware (i.e.,
Central Processing Unit (CPU), monitor, hard drives, printers, etc.) required to support specific
software requirements (i.e., FTA software, hazard tracking database, etc.). Development
activities can be unique and may require program-specific hardware or software. This planning
activity ensures that the safety manager considers all hardware and software requirements that
will be required to fulfill the program objectives.

C-28

Software System Safety Handbook
Appendix C

C.7 PROGRAM PLANS

System safety engineering and management activities, although firmly defined in the SSPP, must
be thoroughly addressed as they interface with other managerial or technical disciplines.
Although not specifically authored by the system safety manager or the software safety team,
numerous program plans must have a system safety input for completeness. This safety input
assures that formal lines of communication, individual responsibilities and accountabilities,
specific safety tasks, and process interfaces are defined, documented, and agreed upon by all
functional or domain disciplines that are affected. Having each technical and functional
discipline performing to approved and (well) coordinated plans increases the probability of
successfully meeting the goals and objectives of the plan. This is concurrent, and systems
engineering at its best.

Examples of specific program plans that require system safety input are (but not limited to) the
Risk Management Plan (RMP), Quality Assurance Plan (QAP), Reliability Engineering Plan
(REP), SDP, SEMP, and TEMP. The system safety manager must assess the program
management activities to identify other plans that may require interface requirements and inputs.
Complete and detailed descriptions can be found in systems design and engineering standards
and textbooks. However, your individual program or system development documentation should
contain the best descriptions that apply specifically to the system being developed.

C.71 RISK MANAGEMENT PLAN

The RMP describes the programmatic aspects of risk planning, identification, assessment,
reduction, and management to be performed by the developer. It should relate the developers’
approach for handling risk as compared with the options available. Tailoring of the plan should
reflect those program areas that have the greatest impact potential. This may be programmatic,
technical (including safety), economical, and/or political risk to the program design,
development, test, or operations activities. The plan should describe in detail how an iterative
risk assessment process is applied at all WBS levels for each identified risk as the design
progresses and matures. It should also describe how the risk assessment in used in the technical
design review process, configuration control process, and performance monitoring activities. In
most instances, and on most programs, safety risk is a subset of technical risk. The risk
assessment and risk management activities of the program must include safety inputs on critical
issues for informed decision making purposes by both program management and engineering.
Safety-critical and safety-significant issues that are not coming to expected or acceptable closure
through the defined safety resolution process must be communicated to the risk management
group through systems engineering.

In the area of software safety, the following areas of risk must be considered within the RMP:

* Costs associated with the performance of specific software safety analysis tasks. This
must include the costs associated with obtaining the necessary training to perform the
tasks,

* Schedule impact associated with the identification, implementation, test and verification
of safety-critical software requirements,

C-29

Software System Safety Handbook
Appendix C

* Technical risk associated with the failure of identification of safety-critical design
requirements early in the design lifecycle, and

* Risk ramifications associated with the failure to implement safety-critical design
requirements, or the implementation of incorrect requirements.

C.72 QUALITY ASSURANCE PLAN

“Without exception, the second most important goal must be product quality.” [STSC 1994]
Hopefully, implied from this initial quote, one would assume that safety is still the most
important goal of a program. Regardless, a quality process is ensured by strict adherence to a
systems engineering approach to development for both hardware and software systems. QA is a
planned and systematic set of actions required to provide confidence that adequate technical
requirements are established, products and services conform to established technical
requirements, and satisfactory performance is achieved. It includes the qualitative and
quantitative degree of excellence in a product. This can only be achieved if there is excellence in
the process to produce the product.

The QAP identifies the processes and process improvement methodologies for the development
activities. It focuses on requirements identification and implementation (not design solutions),
design activities to specifically meet design specifications and requirements, testing to verify
requirements, and maintenance and support of the produced product. Safety input to the QA Plan
must focus on the integration of safety into the definition of quality of the product to be
produced. Safety must become a function of product quality. The safety manager must integrate
safety requirement definitions, implementation, tests, and verification methods and processes

into the quality improvement goals for the program. This will include any software safety
certifications required by the customer.

Guidance on planning SQA and preparing SQA plans can be found in IEEE STD 730-1989 and
IEEE STD 983-1986.

C.7.3 RELIABILITY ENGINEERING PLAN

System safety hazards analysis is heavily influenced by reliability engineering data. A sound
reliability engineering activity can produce information regarding component failure frequency,
design redundancy, sneak circuits, and subsystem and system failure modes. This information
has safety impact on design. The REP describes in detail the planning, process, methods, and the
scope of the planned reliability effort to be performed on the program. Dependent on the scope
(breadth and depth) of the SSP, much of the reliability data produced must be introduced and
integrated into the system safety analysis. An example is the specific failure modes of a
subsystem, the components (whose failure causes the failure mode) and the criticality of the
failure consequence. This information assists in the establishment and refinement of the hazard
analysis and can produce the information required in the determination of probability of
occurrence for a hazard. Without reliability data, the determination of probability becomes very
subjective.

C-30

Software System Safety Handbook
Appendix C

The safety manager must determine whether a sufficient reliability effort is in place that will
produce the information required for the system safety effort. If the development effort requires
a strict quantification of hazard risk, there must be sufficient component failure data available to
meet the scope objectives of the safety program. Numerous research and development projects
produce unique (one-of-a-kind) components. If this is the case, reliability engineers can produce
forecasts and reliability predictions of failures and failure mechanisms (based on similar
components, vendor data, qualification testing, and modeling techniques) which supplements
safety information and increases the fidelity of the safety analysis.

Within the discipline of software safety, the reliability-engineering plan must sufficiently address
customer specifications regarding the failure reliability associated with safety-critical or safety-
significant software code. The plan must address in detail:

* Specific code that will require statistical testing to meet user or system specifications,
* Any perceived limitations of statistical testing for software code,

e Required information to perform statistical testing,

* Methods of performing the statistical tests required to meet defined confidence levels,
* Specific test requirements,

* Test design and implementation, and

e Test execution and test evaluation.

C.74 SOFTWARE DEVELOPMENT PLAN

Software-specific safety requirements have little hope of being implemented in the software
design if the software developers do not understand the rationale for safety input to the software
development process. Safety managers must communicate and educate the software
development team on the methods and processes that produces safety requirements for the
software programmers and testers. Given the fact that most software developers were not taught
that a safety interface was important on a software development program, this activity becomes
heavily dependent upon personal salesmanship. The software development team must be so/d on
the utility, benefit, and the logic, of safety producing requirements for the design effort. This can
only be accomplished if the software development team is familiar with the system safety
engineering process which identifies hazards and failure mode which are either caused by or
influenced by software inputs or information produced by software.

MIL-STD-498 introduces the software development team to the system safety interface. The
wording exists in the standard to implement an initial effort. This interface must be
communicated and matured in the SDP. “The SDP (usually submitted in draft form with the
offeror’s RFP response) is the key software document reflecting the offeror’s overall software
development approach. It must include resources, organization, schedules, risk identification and
management, data rights, metrics, QA, control of non-deliverable computer resources, and
identification of COTS, reuse, and government-furnished software (GFS) the offeror intends to

C-31

Software System Safety Handbook
Appendix C

use. SDP quality and attention to detail is a major source selection evaluation criterion.” [STSC,
1994].

A well structured and highly disciplined software development process, and software engineering
methodology, helps to facilitate the development of safer software. This is the direct result of
sound engineering practices. However, the development of software that specifically meets the
safety goals and objectives of a particular design effort must be supplemented with system safety
requirements that eliminate or control system hazards and failure modes caused by (or influenced
by) software. The SDP must describe the software development/system safety interface and the
implementation, test, and verification methods associated with safety-specific software
requirements. This includes the methodology of implementing generic safety requirements and
guidelines (see Appendix D) and derived safety requirements from hazard analyses. The plan
must address the methodology and design, code, and test protocol associated with safety-critical
software, safety-significant software, or lower safety risk modules of code. This defined
methodology must be in concert methods and process identified and described in the SEMP,
SSPP, and SwSPP.

C.7.5 SYSTEMS ENGINEERING MANAGEMENT PLAN

System safety engineering is an integral part of the systems engineering function. The processes
and products of the SSP must be an integrated subset of the systems engineering effort.

The SEMP is the basic document governing the systems engineering effort. It is a concise, top-
level, technical management plan consisting of System Engineering Management (SEM) and the
Systems Engineering Process. “The purpose of the SEMP is to make visible the organization,
direction, control mechanisms, and personnel for the attainment of cost, performance, and
schedule objectives.” [DSMC, 1990] The SEMP should contain; engineering management
procedures and practices of the developer; definition of system and subsystem integration
requirements and interfaces; relationships between engineering disciplines and specialties; and
reflect the tailoring of documentation and technical activities to meet specific program
requirements and objectives.

A further breakdown of the SEMP contents includes:

1. Technical Program Planning and Control
Program Risk Analysis
Engineering Program Integration
Contract Work Breakdown
Assessment of Responsibility
Program Reviews
Technical Design Reviews
Technical Performance Measurement
2. Systems Engineering Process
a. Functional Analysis
b. Requirements Allocation
c. Trade Studies
d. Design Optimization and Effective Analysis

@ oo o

C-32

Software System Safety Handbook
Appendix C

e. Synthesis
f. Technical Interface Compatibility
g. Logistics Support Analysis
h. Producibility Analysis
1. Generation of Specifications
j. Other Systems Engineering Tasks
3. Engineering Specialties and Integration of Requirements
. Reliability
. Maintainability
Human Engineering
. System Safety
Standardization
Survivability/Vulnerability
. Electromagnetic Compatibility
. Electro-Magnetic Pulse (EMP) Hardening
ILS
Computer Resources Life Cycle Management
. Producibility
Other Engineering Specialty Requirements

— AT D0 O A0 O

The SEMP must define the interface between systems, design, and system safety engineering (to
include software safety). There must be an agreement between engineering disciplines on the
methods and processes that identify, document, track, trace, test, and verify subsystem and
system requirements to meet the system and user specifications. Therefore, the SEMP must
describe how requirements will be categorized. From a safety engineering perspective, this
includes the categorization of safety-critical requirements and the tracking, design, test, and
verification methods for assurance that these requirements are implemented in the system design.
Not only must they be verified to exist, but that the intent of the requirement is sufficiently
incorporated in the design. The lead systems engineer must assist and support the safety
engineering and software-engineering interface to ensure that the hardware and software design
meet safety, reliability, and quality requirements.

C.7.6 TEST AND EVALUATION MASTER PLAN

Ensuring that safety is an integral part of the test process is a function that should be thoroughly
defined in the TEMP. There are three specific aspects of safety that must be addressed.

First, that the test team consider and implement test constraints, bounds, or limitations based on
the safety risks identified by the hazards analysis. Test personnel and test management must be
fully informed regarding the safety risk they assume/accept during pre-test, test, and post-test
activities.

Second, that a specific safety assessment is accomplished for the testing to be accomplished.
This assessment/analysis would include the hazards associated with the test environment, the
man/machine/environment interfaces, personnel familiarization with the product, and the
resolution of hazards (in real-time) that are identified by the test team which were not identified

C-33

Software System Safety Handbook
Appendix C

or documented, in design. The pre-test assessment should also identify emergency back-out
procedures, GO/NO-GO criteria, and emergency response plans. It should also identify personal
observation limitations and criteria to minimize hazardous exposure to test team personnel or
observers.

And last, that the test activities include specific objectives to verify safety requirements identified
in the design hazard analysis and provided in the generic requirements and guidelines
documentation. The safety engineer must ensure that test activities and objectives reflect the
necessary requirement verification methods to demonstrate hazard mitigation and/or control the
levels of acceptable risk defined in the analysis. All safety requirement activities and test results
must be formally documented in the hazard record for closure verification.

C.7.7 SOFTWARE TEST PLAN

The STP addresses the software developer’s approach and methods to testing. This includes
necessary resources, organization, and test strategies. Software development includes in its
definition (for the context of the STP), new software development, software modifications, reuse,
re-engineering, maintenance, and all other activities resulting in software products. The STP
must also include the schedule and system integration test requirements. DID DI-IPSC-81427
required to support MIL-STD-498, Software Development and Documentation, describes in
detail the contents and format of the STP. It should be noted within the contents of the DID that
the test developer must describe in the STP, the method or approach for handling safety-critical
(or safety-significant) requirements. The software safety engineering input to the STP should
assist in the development of this specific approach. This is required to adjust software safety
assessments schedule, resources, and delivery of safety test procedures.

STP review(s), to support the development of the STP, should commence not later than PDR to
facilitate early planning for the project.

Software safety inputs to the STP must include:

» Safety inputs to testing requirements (especially those relating to safety-specific
requirements). This includes test bounds, assumptions, limitations, normal/abnormal
inputs, and expected/anticipated results,

» Safety participation in pretest, test, and post-test reviews,
* Requirements for IV&V and regression testing, and

* Acceptance criteria to meet safety goals, objectives, and requirements.

C.7.8 SOFTWARE INSTALLATION PLAN

The Software Installation Plan (SIP) is a plan that addresses the installation of the developed
software at the user site. This plan should address the conversion from any existing system, site
preparation, and the training requirements and materials for the user. There is minimum safety
interface with the development of this plan, except in the area of safety-related training
requirements.

C-34

Software System Safety Handbook
Appendix C

Specific safety training is inherent in controlling residual risk not controlled by design activities.
Safety risk that will be controlled by training must be delineated in the SIP. In addition, specific
safety inputs should be a part of regular field upgrades where safety interlocks, warnings, training
or other features have been changed. This is especially true in programs that provide “annual
updates.”

C.79 SOFTWARE TRANSITION PLAN

The software transition plan identifies the hardware, software, and other resources required for
deliverable support of the software product. It describes the developer’s plan for the smooth
transition from the developer to the support agency or contractor. Included in this transition is
the delivery of the necessary tools, analysis, and information required to support the delivered
software. From a safety perspective, the developer has the responsibility to identify all software
design, code, and test activities that were in the development process that had safety implication.
This would include the analysis that identified the hazards and failure modes that were
influenced or caused by software. The transition package should include the hazard analysis and
the hazard tracking database that documented the software specific requirements and traced them
to both the affect module(s) of code and to the hazard or failure mode that derived the
requirement. Ramifications of not delivering this information during the transition process is the
introduction of unidentified hazards, failure modes, and/or safety risk at the time of software
upgrades, modifications, or requirement changes. This is particularly important if the code is
identified as safety-critical, or becomes safety-critical due to the proposed change. See the
Appendix regarding CM for further information regarding this issue.

C.8 HARDWARE AND HUMAN INTERFACE REQUIREMENTS

C.8.1 INTERFACE REQUIREMENTS

The interface analysis is a vital part of the SHA. It also plays a role in the analysis to ensure that
software requirements are not circumvented by other subsystems, or within its own subsystem by
other components.

The software interfaces will be traced into, from, and within the safety-critical software functions
of a subsystem. These interfaces will be analyzed for possible hazards, and the summary of these
interfaces and their interaction, or any safety function shall be assessed. Interface addresses of
safety-critical functions will be listed and searched to identify access to and from non-safety-
critical functions and/or shared resources.

Interfaces to be analyzed include; functional; physical, including the Human/Machine Interface
(HMI); and zonal. Typical hazard analysis activities associated with the accomplishment of a
SHA include functional and physical interface analysis. Zonal interfaces (especially on aircraft
design) can become safety-critical also. Using aircraft designs as an example, there exists the
potential of hazards in the zonal interfaces. These zones include, but are not limited to fire
compartments, dry-bay compartments, engine compartments, fuel storage compartments,
avionics bay, cockpit, etc. Certain conditions that are considered hazardous in one zone may not
be hazardous in another. The important aspect of the SHA activity is to ensure each functional,

C-35

Software System Safety Handbook
Appendix C

physical, and zonal interface is analyzed and the hazards documented. Requirements derived
from this analysis are then documented in the hazard record and communicated to the design
engineering team.

Before beginning this task, definitions regarding the processes using an interface must be
defined. This should also include the information passing that interface which affects safety.
The definitions of processes are similar to most human factor studies. An example is the Critical
Task Analysis (CTA). The CTA assesses which data passes the interface that is critical to the
task. Once the data is identified, the hardware that presents the data, and the software that
conditions the hardware and transmission, is examined.

It is recommended that as much preliminary interface analysis (as practical) be accomplished as
early in the development lifecycle as possible. This allows preliminary design considerations to
be assessed early in the design phase. It should be reiterated that requirements are less costly and
more readily accepted by the design team if identified early in the design phases of the program.
Although many interfaces are not identified in the early stages of design, the safety engineer can
recommend preliminary considerations if these interfaces are given consideration during PHA
and SSHA activities. From a software safety perspective, interfaces between software, hardware,
and the operator (most likely) will contain the highest safety risk potential. These interfaces must
be thoroughly analyzed and safety risk minimized.

C.8.2 OPERATIONS AND SUPPORT REQUIREMENTS

Requirements to minimize the safety risk potential are also identified during the accomplishment
of the O&SHA. These requirements are identified as they apply to the operations, support, and
maintenance activities associated with the system. The requirements are also, and usually,
categorized in terms of protective equipment, safety and warning devices, and procedures and
training. At this later phase of the development lifecycle, it is extremely difficult to initiate
system design changes to eliminate a potential hazard. If this is even an option, it would be a
formal configuration change and require an ECP approved by the Configuration Control Board
(CCB). If the hazard is serious enough, an ECP is a viable option. However, as previously
stated, formal changes to a “frozen” design become extremely expensive to the program.

Those hazards identified by the O&SHA and hazards previously identified (and not completely
eliminated by design) by the PHA, SSHA, SHA, and HHA are risk-minimized to a lower HRI by
protective equipment, safety warning devices, and procedures and training. A great percentage of
these safety requirements affect the operator and the maintainer (the HMI).

C.8.3 SAFETY/WARNING DEVICE REQUIREMENTS

Safety devices and warning devices are also used within the system and in test, operation, and
maintenance activities that must be identified during the hazard analysis process. As with the
requirements identified for protective equipment, procedures, and training, these requirements
should be identified during the concept exploration phase of the program and refined and
finalized during the final phases of design. If the original hazard cannot be eliminated or
controlled by design changes, safety and warning devices are considered. This will minimize the
safety risk, hopefully, to acceptable levels of the HRI matrix.

C-36

Software System Safety Handbook
Appendix C

C.84 PROTECTIVE EQUIPMENT REQUIREMENTS

Another function of the O&SHA is to identify special protective equipment requirements for the
protection of personnel (test, operator, or maintainer), the equipment and physical resources, and
the environment. This can be as extensive as a complicated piece of equipment for a test cell,
and as simple as a respirator for an operator. Each hazard identified in the database should be
analyzed for the purpose of further controlling safety risk to the extent feasible with the resources
available. The control of safety risk should also be as extensive to meet programmatic, technical,
and safety goals established in the planning phases of the program

C.8.5 PROCEDURES AND TRAINING REQUIREMENTS

The implementation (setup), test, operation, maintenance, and support of a system requires
system-specific procedures and training for the personnel associated with each activity.
Environmental Safety and Health (ESH) issues for personnel and the protection of physical
program resources and natural resources, facilitate the necessity for safety requirements. Safety
requirements that influence the system test, operating, maintenance, and support procedures and
personnel training can be derived as early as the PHA and carried forward for resolution and
verification in the O&SHA. 1t is the responsibility of the safety analyst (with the test and ILS
personnel) to incorporate the necessary safety inputs to procedures and training documentation.

C.9 MANAGING CHANGE

The old adage “nothing is constant except change” applies to software after the system is
developed. Problems encountered during system-level IV&V, and operational testing account for
a small percentage of the overall changes. Problems or errors found by the user account for an
additional percentage. However, the largest numbers of changes are the result of upgrades,
updates, and pre- (or un-) planned product enhancements. Managing change from a safety
perspective requires that the SSS Team assess the potential impact of the change to the system.

If the change is to correct an identified safety anomaly or the change potentially impacts the
safety of the system, the software systems safety assessment process must rely on the analyses
and tests previously conducted.

C91 SOFTWARE CONFIGURATION CONTROL BOARD

CM is a system management function wherein the system is divided into manageable physical or
functional configurations and grouped into CIs. The CCB controls the design process through
the use of management methods and techniques, including identification, control, status
accounting, and auditing. CM (Figure C.5) of the development process and products within that
process is established once the system has been divided into functional or physical configuration
items. The CCB divides any changes into their appropriate classes (Class I or Class II) and
ensures that the proper procedures are followed. The expressed purpose of this function is to
ensure that project risk is not increased by the introduction of changes by unauthorized,
uncontrolled, poorly coordinated, or improper changes. These changes could directly or
indirectly affect system safety and, therefore, require verification, validation, and assessment
scrutiny.

C-37

Software System Safety Handbook
Appendix C

The CCB assists the PM, design engineer, support engineers, and other acquisition personnel in
the control and implementation of Class I and Class II changes. Class I changes are those which
affect form, fit, or function and require user concurrence prior to developer implementation.
Class II changes are those not classified as Class I. Examples of Class II changes include
editorial changes in documentation or material selection changes in hardware.

GENERIC

SOFTWARE CONFIGURATION CHANGE PROCESS

|Software Design
| Board Review

Lo

INCORPORATE 4_ APPROVE ARCHIVE
CHANGE ! CHANGE
|
| |
| Software Configuration Control Board |
VERIFY SUPPLY FEEDBACK |
CHANGE . TO ORIGINATOR .

SOFTWARE
ENHANCE-
MENTS

- EERRREEEEEEEEmmmmmss

ANALYZE AND
ASSESS IMPACT

ENGINEERING
CHANGE PROPOSAL
PREPARATION

EVALUATE
ENGINEERING
CHANGE PROPOSAL

Figure C.5: Generic Software Configuration Change Process

The CCB ensures that the proper procedures for authorized changes to the CI or related products
or interfaces are followed and that risk is not increased by the change. The CCB should also
ensure that any intermediate step that may halt and expose the project to increased safety risk
while halted is controlled. The system safety assessment regarding a configuration change must

include:

responsible for the change,

Thorough review of the proposed change package ECPs prepared by the engineer

C-38

Software System Safety Handbook
Appendix C

» Effects of the proposed change on subsystem and system hazards previously identified.
This is to include existing and new functional, physical, or zonal interfaces,

* Determination as to whether the proposed change introduces new hazards to the system or
to its operations and support functions,

e Determination as to whether the proposed change circumvents existing (or proposed)
safety systems, and

* Analysis of all hardware/software and system/operator interfaces.

The SSS Team follows much the same process, on a smaller scale, as they followed during
system development. The analyses will have to be updated and appropriate tests re-
accomplished, particularly the safety tests related to those portions of the software being
modified. The development of the change follows the ECP process complete with the
configuration control process. The overall process follows through and concludes with a final
safety assessment of the revised product. It is important to remember that some revalidation of
the safety of the entire system may be required depending on the extent of the change. One very
important aspect of managing change is the change in system functionality.

This includes the addition of new functionality to a system that adds safety-critical functions to
the software. For example, if the software developed for a system did not contain safety-critical
functions in the original design yet the modifications add new functionality that is safety-critical,
the software safety effort will have to revisit a great deal of the original software design to assess
its safety risk potential. The software safety analysts will have to revisit both the generic safety
design requirements and the functionally derived safety requirements to determine their
applicability in light of the proposed software change. Where the tailoring process determined
that certain generic requirements were not applicable, the rationale will have to be examined and
the applicability re-determined. It is very easy for the PA to try to argue that the legacy software
is safe and the new functionality requires that it be the only portion examined. Unless very high-
quality, software-engineering standards were followed during the original development, it will be
very difficult for the safety analyst to ensure that the legacy software cannot adversely impact the
new functionality. Again, the process used is much the same as it was for the original software
development.

C-39

Software System Safety Handbook
Appendix D

D. COTS AND NDI SOFTWARE

D.1 INTRODUCTION

The safety assessment of systems requires detailed knowledge of the system components and
their interactions. This applies to hardware and software. Only through the analysis of these
components and their interactions can the safety analyst identify and evaluate hazard causal
factors. Hazard causal factors include errors (e.g., operator errors, design errors, implementation
errors, etc.) or failures that are elements of a hazardous condition. By themselves, they generally
do not cause hazards, rather, they require other conditions to result in a hazard. Unique military
hardware and software allows the safety analyst the insight to the design specifics permitting
him/her to determine these hazard causal factors. By recommending design requirements and
implementations that reduced the occurrence of the hazard causal factors, the safety analyst
reduces the probability of occurrence of hazards that he/she cannot eliminate through design
selection recommendations. However, without detailed knowledge, the analyst must work at a
higher level of abstraction minimizing his/her ability to control the hazard causal factors. In
many instances, the analyst will not be able to provide any direct control of the causal factors and
thus must rely on other techniques for hazard risk reduction. Generally, as the level of
abstraction increases, the availability of practical and economic control decreases.

Risk reduction in systems employing Non-Developmental Item (NDI) varies with the degree of
abstraction of the non-development components. For legacy components with adequate
documentation, the level of abstraction may be sufficient to allow the analyst to develop causal
factor controls. He/she can incorporate features that mitigate specific causal factors in the legacy
components. Similarly, Government Off-The-Shelf (GOTS) components (hardware or software)
may provide the necessary detailed documentation to allow the safety analyst to develop causal
factor controls. Even if the developer cannot modify these components, the insight allows the
analyst to determine the causal factors and develop recommendations for controls in the
application software design to preclude their causing or influencing a hazard. COTS and CDI
generally pose the real problem; the lack of documentation precludes the analyst from performing
the detailed analyses necessary to determine the causal factors related to these items. In addition,
the complexity of interactions between some NDI software (e.g., OSs) and the application
software (i.e., software unique to the system) makes it extremely difficult to determine the causal
factors to the required level of detail. This prevents the analyst from developing specific design
recommendations to mitigate the causal factors.

A note of caution to the reader; do not assume that it is only the NDI that is related to the fielded
system of interest or concern. Computers, workstations, and software development tools used as
part of the process are also a concern and can have significant safety implications. Similarly, the
use of simulators (including stubs) and emulators used during development or as adjuncts to the
fielded system may also have safety implication. For example, software for a Weapon Control
System (WCS) proceeds through development using a specific set of CASE tools including a
compiler. The software safety analysis and testing demonstrates that the software executes in the
system context with an acceptable level of risk. However, prior to deployment, the developers
make minor changes to correct non-safety-related problems and recompile the software using a

Software System Safety Handbook
Appendix D

new compiler. Although the developer made no changes to the safety-related portions of the
software, the recompiled software executes differently due to differences in the compilers. These
differences can impact the safety of the system in an operating environment. The validation
testing performed on the system actually validates the object code executing on the system: not
the design or the source code. System safety must therefore perform regression testing on the
recompiled software to ensure that changes to the object code do not adversely affect the safety
performance of the software in the system context.

D.2 RELATED ISSUES

D.21 MANAGING CHANGE

Technology refreshments and upgrades may introduce hazard causal factors and thus require
special attention by system safety. Many developers provide upgrades, enhancements, or error
corrections to commercial software products on a routine basis. In addition, developers often
offer patch updates via the Internet. Microprocessors and single board computers change less
frequently, however they both change much faster than their earlier military-unique counterparts.
The pace of change is increasing as manufacturing techniques improve. One commercial
software developer reportedly can introduce revisions in “shrink-wrap” commercial products
within four hours of approval. Developers often do not change version numbers or provide other
indications of minor upgrades or error corrections. Although a packaged product may indicate a
certain version number, it may include patches and updates that earlier versions, perhaps even
those sitting on the same shelf, did not include.

The products used in the system are not the only items subject to change. Compilers, software
development tools, and other items used during the development process also change frequently.
System developers often assume that they may recompile code using a new compiler with few, if
any problems. However, experience demonstrates otherwise, especially for systems upgrading to
new processors and OSs simultaneously. System safety must ensure that the effort includes
sufficient safety testing and analysis to verify that the changes do not influence known hazards or
adversely affect the residual risk of the system. Processor or OS changes may invalidate
interlocks, firewalls, timing constraints, or other hazard mitigation implemented in the design.
Therefore, system safety must address these issues as part of a delta analysis to the system that
may include revisiting code-level analyses of the application software.

D.2.2 CONFIGURATION MANAGEMENT

Managing change introduces the subject of CM, a significant issue in safety-critical applications
of COTS software and hardware. If the developer performs sufficient analysis and testing to
verify that a specific version of a COTS program will not adversely affect the safety of the
system, that certification applies only to the specific version of the COTS program tested.
Unfortunately, as noted above, the system developer is often not aware of changes inserted into
the COTS software. Therefore, unless he/she releases only the tested version to the user as part
of the system and uses only that version for future releases, the safety certification for that
software is invalid. System developers must obtain agreements from COTS software to alert

D-2

Software System Safety Handbook
Appendix D

them of any changes made to the packaged software used. This rule applies to software that is
part of the system as well as software used to develop the system.

D.2.3 REUSABLE AND LEGACY SOFTWARE

Reusable software, as its name implies, is software from a previous program or system used in
place of uniquely developed software to reduce costs. The term generally applies to software
developed for a broad range of similar systems or applications, such as avionics software. The
software may or may not meet all of the needs of the system under development or it may include
functionality not required by the system, therefore requiring modification. Generally, the system
developers do not modify the software to remove the unnecessary functionality. The software
safety analyst must analyze the software proposed for reuse in the system context to determine
what its role and functionality will be in the final system. He/she must perform this analysis
regardless of whether or not the software was safety “qualified” in its previous application since
the safety-criticality of the software is application dependent. Thus, the reuse of software does
not ease the software safety program burden.

D.3 APPLICATIONS OF NON-DEVELOPMENTAL ITEMS

Applications of NDI software include OSs and environments, communications handlers,
interface handlers, network software, database managers, data reduction and analysis tools, and a
variety of other software components that are functionally part of the system. Indirect
applications of NDI include programming languages, compilers, software development (e.g.,
CASE) tools, and testing tools that indirectly affect the applications software in the fielded
system.

D.31 COMMERCIAL-OFF-THE-SHELF SOFTWARE

The safety assessment of COTS software poses one of the greatest challenges to the safety
certification of systems. COTS software is generally developed for a wide range of applications
in the commercial market. Developers use an internal company or industry standard, such as
IEEE, ANSI, or National Institute for Standards and Technology for software development. In
general, the company or the project team determines the language used. Since the vendor
releases only compiled versions of the product, there is often no way to determine that language.
Because the COTS developers can only deduce at the applications for the product, they cannot
address specific issues related to a particular application. However, the developer attempts to
ensure that the product is compatible with many system and software configurations. This often
results in additional functionality that, in it self may be hazardous.

An excellent example of a COTS related issue in a safety-critical system occurred with a major
blood databank. The databank used COTS database management and network software tailored
to the company’s needs. The databank stores information regarding individual units of blood
including blood type and whether or not the blood has any infectious diseases. Two separate
laboratories tested samples for blood type and for diseases. However, each laboratory had testing
responsibility for different diseases. The databank operated safely for several years when a
problem occurred: both laboratories accessed the same record simultaneously to enter their test

Software System Safety Handbook
Appendix D

results. The simultaneous access resulted from reduced blood donations meaning the
laboratories had fewer blood samples to test. Laboratory A tested for several diseases, including
HIV, in the blood samples, noted the results in the database record, and saved the record.
Meanwhile, Laboratory B discovered infectious hepatitis in a blood sample, noted the fact in the
same record, and saved it, overwriting laboratory A's findings. Freezing methods can destroy
infectious hepatitis therefore, the company believed the blood safe for use after processing.
Thus, whether or not the blood had the HIV was unknown. Fortunately, the company discovered
the error prior to distribution of the blood. Note the various causal factors in this example.
Tainted blood is an obvious hazard causal factor outside the company’s direct control.
Therefore, they required the blood screening process (hazard control). Accessing the same
record simultaneously is a second causal factor. The probability of this occurring was very low
when blood donations were high. Laboratory B overwriting the record from laboratory A is a
third causal factor. Finally, various aspects of blood collection and distribution are conditions
that, in combination with the causal factors, would lead to a hazard if a patient received tainted
blood.

The blood databank example illustrates how the application of a NDI program affects safety
issues. The database management program designer could not anticipate all applications of the
program and design it to preclude the event described above. Originally, he/she developed the
database manager for a single computer application without considering networked applications
and therefore could not anticipate that two users accessing a record simultaneously would lead to
a hazard. Likewise, the network program designer could not anticipate such a hazard either.
He/she would rely on the database management program to provide the necessary records
security.

In the conduct of a SSP, the safety team analyzes the system to identify the undesired events
(mishaps), the hazards that provide the preconditions for the mishap, and the potential causal
factors that may lead to those hazards. By eliminating or reducing the probability of occurrence
of the causal factors, the analyst reduces the probability of the hazard and the overall mishap risk
associated with the system. As noted earlier, the safety analyst requires detailed knowledge of
the system design and its intended use to eliminate or reduce the risk of hazards. COTS software
poses several problems in this regard. Generally, vendors provide only user documentation from
the commercial software developers. The type of documentation necessary to conduct detailed
analyses is usually not available. The developer may not even generate high-level specifications,
FFDs, DFDs, or detailed design documents for a given commercial software package. The lack
of detailed documentation limits the SWSE to identifying system hazard causal factors related the
COTS software at a high level. He/she has no ability to develop and implement design
requirements or analyze the design implementation within the COTS software to eliminate or
reduce the probability of occurrence of these causal factors.

Occasionally, system developers may purchase the required documentation from the COTS
developer who often charge premium prices for it. However, its availability provides the safety
team the detailed knowledge of the design to identify the hazard causal factors and design
specific interlocks in the applications software to preclude their occurrence. The detailed
analysis and testing of the COTS product with the application software poses both cost and
schedule risks. The project team must determine if these costs and risks are greater than

Software System Safety Handbook
Appendix D

implementing the other recommendations for reducing the risk of safety-critical applications of
COTS.

Testing of the COTS software in this application is very limited in its ability to provide evidence
that the software cannot influence system hazards. Testing in a laboratory cannot duplicate every
nuance of the operational environment nor can it duplicate every possible combination of events.
Based on their knowledge of failures and operational errors of the software design, test engineers
can develop procedures to test software paths. Even when the developer knows the design and
implementation of the software in detail, many constraints still apply. The testing organization,
like the safety organization, must still treat COTS software as a "black box,” developing tests to
measure the response of the software to input stimulus under (presumably) known system states.
Hazards identified through "black box" testing are sometimes happenstance and difficult to
duplicate. Timing issues and data senescence issues also are difficult to fully test in the
laboratory environment even for software of a known design. Without the ability to analyze the
code, determining potential timing problems in the code is difficult at best. Without detailed
knowledge of the design of the software, the system safety and test groups can only develop
limited testing to verify the safety and fail-safe features of the system.

Like commercially available software, commercially available hardware also possesses
limitations that make safety certification of software applications difficult in most cases.
Companies design commercial systems, such as workstations, to industry standards that are much
less stringent than the military standards. Any number of vendors may supply parts or
subsystems with little control over the quality or conformance to requirements other than those
imposed by the developer. As with COTS software, the vendor generally does not document the
firmware embedded in the COTS hardware in a manner that can be analyzed by the user. In
addition, high-level, detailed documentation on the hardware design may not be available for
review and analysis. Therefore, it is easy to draw corollaries between system safety issues related
to COTS software and COTS hardware. Open architecture systems employing COTS software
and NDI hardware pose safety concerns requiring different solutions than existing system
architectures.

D.4 REDUCING RISKS

The system developer has a number of options for addressing the risk associated with the
application of NDI software in safety-critical systems. The first, and unfortunately most obvious
is to ignore it, i.e., treat it as “trusted” software. This option virtually guarantees that a hazard
will occur at some point in the system’s lifecycle. The system development group must employ
techniques to reduce the risk of NDI software in safety-critical applications.

D.4.1 APPLICATIONS SOFTWARE DESIGN

The straightforward approach is to design the application software for any eventuality. However,
this is often difficult, particularly if the developers are not aware of the full range of functionality
of the NDI software. It requires the safety analyst to identify all of the potential causal factors
and ensure that the applications software design will respond in a safe manner. Often this adds
significant complexity to the software and will likely reduce its availability. However, the safety

Software System Safety Handbook
Appendix D

analyst must thoroughly evaluate any change to the NDI software and ensure that the applications
software changes correspondingly to mitigate any risks. This process can be extremely
expensive.

One technique related to this issue is under investigation by the system safety organization at
Lockheed-Martin in Syracuse, New York, is the use of discriminators. Discriminators are
characteristics of the NDI product that are potentially safety-critical in relation to the applications
software. The developer uses discriminators to determine when changes to the NDI software
may impact the applications software. This process appears viable on paper, however in practical
application it has proven much more difficult than expected. One reason for this difficulty is the
determination of changes that indirectly impact the safety-critical functionality of the software.
To a large degree, the ability of unrelated software to impact the functionality that influences the
safety-critical aspects of the applications software depends directly on the quality of the software
development process used by the NDI developer. If the developer maintained high quality
software engineering practices, including information hiding, modularization, and weak
coupling, the likelihood that unrelated software can impact the functionality that influences
safety-critical portions of the applications software is greatly reduced. This same paradigm
applies to any safety-critical software.

D.4.2 MIDDLEWARE OR WRAPPERS

An effective method of reducing the risk associated with NDI software applications is to reduce
its influence on the safety-critical functions in the system. This requires isolation (e.g., firewalls)
of the NDI software from the safety-critical functions. Isolation from an OS requires a layer of
software, often called middleware, between the applications software and the OS. The
middleware interfaces to both the OS and the applications software. All interactions between the
applications software and the OS take place through the middleware. The middleware
implementation simplifies the design of the applications software by eliminating the need to
provide robustness to change in the OS interface: that robustness becomes part of the
middleware. The developer can specify and maintain a detailed interface design between the
middleware and the applications software. The developer must then provide the necessary
robustness for the OS in the middleware. The middleware also contains the exception and
interrupt handlers necessary for safe system operation. The middleware may contain macros and
other programs used by numerous modules in the applications software rather than relying on
those supplied by the NDI products.

Isolation of safety-critical functions from the NDI software may require application-specific
software “wrappers” on either side of the NDI software effectively isolating two software
packages. This technique is similar in nature to the middleware discussed above but is much
more specific to a particular function within the system. The wrapper will perform the necessary
sanity checks and isolation to preclude hazards’ occurrence. The safety analyst must consider the
risk associated with NDI during the PHA phase of the program. The identification of potential
causal factors associated with NDI (these need not be too specific) helps identify the need for
such wrappers. By identifying these causal factors, the analyst can develop design requirements
for the wrapper. Again, these need not be specific. The safety analyst knows what the safety-

Software System Safety Handbook
Appendix D

critical software needs and expects to see. The wrapper simply prevents anything else from
“getting through”.

The use of isolation techniques also has limitations. One limitation is when interfaces to external
components pass through NDI software. For example, a system may use a hard disk to store and
retrieve safety-critical data. The NDI OS provides the handler and data transfer between the disk
and the applications software. For devices such as data storage and retrieval, the developer must
ensure that the devices selected for the system provide data integrity checks as part of that
interface. Another limitation is the amount of software required to achieve adequate isolation. If
the applications software has interactions with the NDI software in numerous functional areas,
the complexity of the middleware and/or the number of wrappers required may make them
impractical or cost prohibitive.

Wrappers and middleware are effective techniques for isolating the safety-critical functionality.
If identified early in the system development process they are also cost effective although they do
invoke costs for the development and testing of this specialized software. Another benefit is that
when properly designed, the wrappers and middleware reduce the impact of changes in the NDI
products from both the system safety and system maintainability perspective. Wrappers and
middleware can be relatively simple programs that the developer can readily modify to
accommodate changes in the NDI software. However, as noted above, when the interactions are
complex in nature, the middleware and wrappers can become complex as well.

D.4.3 MESSAGE PROTOCOL

A technique for isolating safety-critical data from NDI software (OSs, network handlers, etc.) is
to package all communications in a robust manner. Specifying a communications protocol that
provides unique identification of the message type and validation of the correct receipt of the
data transfer will ensure that the NDI products to not adversely affect the safety-critical data.

The degree of robustness required depends on the criticality of the data. For highly critical data,
a message protocol using Cyclic Redundancy Checks (CRC), Fletcher Checksums, or bit-by-bit
comparisons provides a very high degree of assurance that safety-critical data passed between
system components is correct. Less robust data checks include arithmetic and linear check sums
and parity checks coupled with well-defined message structures. The middleware may
incorporate the message handler, including the CRC or checksum software, thus offloading that
functionality from the applications software. The benefits of this approach are that it is relatively
easy and cost effective if implemented early in the system design. However, like all other aspects
of system design, late identification of these requirements results in a significant cost impact.

D.4.4 DESIGNING AROUND IT

A technique often used is to design around the CDI software. Embedding exception and
interrupt handlers in the applications software ensures that the application software maintains
control of the system. However, it is generally not possible to wrestle control for all exceptions
or interrupts from the OS and environment or the compiler. Micro-code interrupt handlers
embedded in the microprocessor BIOS often cannot be supplanted. Attempting to supplant these
handlers is likely to be more hazardous than relying on them directly. However, careful attention

Software System Safety Handbook
Appendix D

to the design of the applications software and its interaction with the system when these
interrupts occur can mitigate any related hazards.

The system developer can design the applications software to ensure robustness in its interface to
the OS and environment. The robustness of the design depends on the ability of the analyst to
identify potential failure modes and changes to the OS or environment. For complex systems,
the time and resources required to identify all of the failure modes and potential changes is very
high. The additional complexity in the applications software may also introduce hazard causal
factors into the design that were not present in the simpler design. Many other aspects of
designing around CDI software are beyond the scope of this Appendix. The need for design
features depends directly on the CDI software in the system and the interactions between the CDI
software and the applications software. Message protocol and watchdog timers are other
examples of designing around CDI software.

D.4.5 ANALYSIS AND TESTING OF NDI SOFTWARE

The system developer may have access to detailed design documentation on the NDI products.
The availability varies from product to product but is generally very expensive. However, the
detailed analysis of the NDI software and its interactions with the applications software provides
the greatest degree of assurance that the entire software package will execute safety in the system
context. Analysis of the NDI products allows the development of directed testing of the
application software in the NDI environment to determine if identified causal factors will indeed
result in an undesired condition. However, it may be difficult to generate failure modes in NDI
software without actually inserting modifications. Earlier paragraphs discussed this option and
noted that the project team must evaluate the cost of procuring this documentation against the
cost of other options. A portion of the decision must consider the potential consequences of a
safety-critical failure in the system.

D.4.6 ELIMINATING FUNCTIONALITY

Eliminating unnecessary functionality from OSs and environments reduces the risk that these
functions will corrupt safety-critical functions in the applications software. Some functionality,
such as file editors, is undesirable in safety-critical applications. One US Navy program retained
an OS’s file editor to allow maintenance personnel to insert and test patches and perform
software updates. Unfortunately, the users discovered this capability and used it to resolve
problems they were having with the system. One of the problems resolutions discovered by the
sailors also overrode a safety-interlock in the system that could have inadvertently launched a
weapon. Although an inadvertent launch did not occur, the potential for its occurrence was very
high. It may not be possible, and occasionally even risky, to eliminate functions from OSs or
environments. Generally, one eliminates the functionality by preventing certain modules from
loading. However, there may be interactions with other software modules in the system not
obvious to the user. This interdependency, particularly between apparent unrelated system
modules, may cause the software to execute unpredictably or to halt. If the NDI developer
designed the product well, these interdependencies will be minimal.

Software System Safety Handbook
Appendix D

D.4.7 RUN-TIME VERSIONS

Some OSs and environments have different development and run-time versions. The run-time
versions already have unnecessary functionality removed. This allows the use of the full version
on development workstations. The execution and testing use only those functions available in
the run-time version thus allowing the developers more flexibility during the design. Some of
these systems, such as VxWorks® are rapidly becoming the OS of choice for command and
control, fire control, and weapon control systems. System developers should consider the
availability of run-time versions when selecting an OS or environment.

D.4.8 WATCHDOG TIMERS

The purpose of a watchdog timer is to prevent processors from entering loops that, for whatever
reason, go on indefinitely, or to exit processing that takes longer than expected. Applications
software can also use similar timers for safety-critical timing constraints. Watchdog timers issue
an interrupt to the processor after a pre-determined time. A command from the applications
software resets the timer to its pre-determined value each cycle. Software designers must not
embed the reset command within a loop, other than the main execution loop in the program. In
the design and implementation of the watchdog timer, the safety engineer addresses several
issues. The watchdog timer processing should return safety-critical outputs and external system
components to a safe state. Often, when a processor enters an infinite loop, the processor state
and hence the system state is non-deterministic. Therefore, the safety engineer has no assurance
that the system is in a safe state. The watchdog timer must be independent of the processing, i.e.,
not be an imbedded function within the processor software unless that processing is completely
independent of the timing loop it is monitoring. The safety engineer should determine those
processes that may adversely affect the safety of the system should their execution time go
beyond a pre-determined time. An example of such a process is a call to another subroutine that
obtains a safety-critical value from an external source. However, the external source data is not
available and the subroutine waits for the external source to provide it. If a delay in this data
causes a data senescence problem in the safety-critical process, the program should interrupt the
subroutine waiting on the data and return to a safe state. That safe state may simply be to refresh
stale data or it may require the software actively change the state of external system components.
The watchdog timer may perform this function for a small system or the design may implement
secondary watchdog timers specifically for this type of function.

D.49 CONFIGURATION MANAGEMENT

Once the system developer determines the NDI software for the system, they should attempt to
maintain configuration control over that software just as they do over the applications software.
For commercially obtained items, this may require an agreement between the vendor and the
developer. Even if a NDI supplier is unwilling to provide notification of changes to the product,
the system developer can establish procedures to detect changes and determine their potential
impact. In the simplest case, detection may use file comparison programs to compare two or
more copies of a product. However, these generally only detect a difference without providing
any indication of the changes made.

D-9

Software System Safety Handbook
Appendix D

D.410 PROTOTYPING

Although prototyping is not directly related to the application of NDI software in safety-critical
systems, some of the benefits derived from this development methodology apply to the safety
assessment of the application software in the NDI environment. Rapid prototyping allows the
safety analyst to participate in the “build-a-little, test a little” process by analyzing and testing
relatively small portions of the system functionality each time. They can then identify safety
issues and incrementally incorporate them into the design. The safety analyst also begins to build
an analytical picture of the interactions between the NDI software and the applications software.
This allows the development and integration of risk mitigation techniques on a real-time basis.

D.4.11 TESTING

Testing at the functional and system levels also helps evaluate the risk associated with NDI in
safety-critical systems. However, there are numerous limitations associated with testing. Some
of these are that it is impossible to examine all possible paths, conditions, timing, and data
senescence problems, create all possible failure conditions and modes, and cause the system to
enter every state machine configuration that may occur in the operational environment. Many
other limitations to testing for safety that apply to any developmental system apply to the NDI
environment as well. Earlier paragraphs in this Appendix addressed even more limitations
associated with testing. As with safety testing in general, the analyst can develop directed tests
that focus on the safety-critical aspects of the interaction of the NDI software with the
applications software. However, the ability to introduce failure modes is very limited in this
environment. Testers must have a set of benchmark (regression) tests that evaluate the full
spectrum of the application software’s safety-critical functionality when evaluating changes to
the NDI software.

D.5 SUMMARY

The techniques discussed in this Appendix will not reduce the residual mishap risk associated
with systems employing NDI unless they are part of a comprehensive SSP. A single technique
may not be adequate for highly critical applications and the system developer may have to use
several approaches to reduce the risk to an acceptable level. Early identification of hazards and
the development and incorporation of safety design requirements into the system design are
essential elements to a cost-effective risk reduction process. The analysis of their
implementation in the design ensures that the software design meets the intent of the
requirements provided. Early identification of the requirements for isolation software will
provide a cost-effective approach to addressing many of the potential safety issues associated
with NDI applications.

Unfortunately, there are no silver bullets to resolve the safety issues with safety-critical
applications of NDI just as there are none for the software safety process in general. The
techniques all require time and effort and involve some level of programmatic risk.

This Handbook discusses the various techniques for reducing the risk of NDI applications in the
context of safety-critical functions in the applications software. However, these same techniques

D-10

Software System Safety Handbook
Appendix D

are equally applicable to other desirable characteristics of the system, such as mission
effectiveness, maintainability and testability.

D-11

Software System Safety Handbook
Appendix E

E. GENERIC REQUIREMENTS AND GUIDELINES

E.1 INTRODUCTION

The goal of this Appendix is to provide generic safety design requirements and guidelines for the
design and development of systems that have or potentially have safety-critical applications.
These requirements and guidelines are designed that, if properly implemented, they will reduce
the risk of the computing system causing an unsafe condition, malfunction of a fail safe system,
or non-operation of a safety function. These requirements and guidelines are not intended to be
used as a checklist but in conjunction with safety analyses performed in accordance with
applicable standards and directives and must be tailored to the system or system type under
development. These requirements and guidelines must also be used in conjunction with accepted
high quality software engineering practices including configuration control, reviews and audits,
structured design, and related systems engineering practices.

E.1.1 DETERMINATION OF SAFETY-CRITICAL COMPUTING SYSTEM
FUNCTIONS

The guidelines of this Appendix are to be used in determining which computing system functions
are safety-critical. Specific identification of safety-critical computing systems should be done
using the safety assessment requirements or similar techniques.

E.1.1.1 SPECIFICATIONS

The required safety functions of the computing system shall be determined from the analysis of
the system and its specifications. These computing system safety functions are to be designated
Safety-Critical Computing System Functions (SCCSFs).

E.1.1.2 SAFETY-CRITICALITY

A hazard analysis of the risks associated with the specified functions of the computing system
shall be made to reduce the potentially harmful effects of both random and systemic (design)
failures in such systems. The functions associated with a potentially unacceptable level of risk to
the system user; other personnel; third parties; and, if appropriate, other facilities, equipment, and
the environment in general are to be designated SCCSFs.

E.1.1.3 LiKELY SCCSFs

* Any function which controls or directly influences the pre-arming, arming, enabling,
release, launch, firing, or detonation of a weapon system, including target identification,
selection and designation,

* Any function that determines, controls, or directly influences the flight path of a weapon
system,

Software System Safety Handbook
Appendix E

* Any function that controls or directly influences the movement of gun mounts, launchers,
and other equipment, especially with respect to the pointing and firing safety of that
equipment,

* Any function which controls or directly influences the movement of munitions and/or
hazardous materials,

* Any function which monitors the state of the system for purposes of ensuring its safety,

* Any function that senses hazards and/or displays information concerning the protection of
the system,

* Any function that controls or regulates energy sources in the system,

* Fault detection priority. The priority structure of fault detection and restoration of safety
or correcting logic shall be considered safety-critical. Software units or modules handling
or responding to these faults,

* Interrupt processing software. Interrupt processing software, interrupt priority schemes
and routines that disable or enable interrupts,

* Autonomous control. Software components that have autonomous control over safety-
critical hardware,

* Software controlled movement. Software that generates signals which have been shown
through analysis to directly influence or control the movement of potentially hazardous
hardware components or initiate safety-critical actions,

» Safety-critical displays. Software that generates outputs that displays the status of safety-
critical hardware systems. Where possible, these outputs shall be duplicated by non-
software generated output, and

» Critical data computation. Software used to compute safety-critical data. This includes
applications software that may not be connected to or directly control a safety-critical
hardware system (e.g., stress analysis programs).

E.2 DESIGN AND DEVELOPMENT PROCESS REQUIREMENTS
AND GUIDELINES

The requirements and guidelines of this section apply to the design and development phases.

E21 CONFIGURATION CONTROL

Configuration control shall be established as soon as practical in the system development
process. The Software CCB prior to their implementation must approve all software changes
occurring after an initial baseline has been established. A member of the Board shall be tasked
with the responsibility for evaluation of all software changes for their potential safety impact.
This member should be a member of the system safety engineering team. A member of the
hardware CCB shall be a member of the software CCB and vice versa to keep members apprised

Software System Safety Handbook
Appendix E

of hardware changes and to ensure that software changes do not conflict with or introduce
potential safety hazards due to hardware incompatibilities.

E.2.2 SOFTWARE QUALITY ASSURANCE PROGRAM

A SQA program shall be established for systems having safety-critical functions. SQA is defined
as follows: "Assurance is the confidence based upon objective evidence, that the risk associated
with using a system conforms with our expectation of, or willingness to tolerate, risk." There are
several issues that should be addressed by the program office to calibrate confidence in the
software. There is consensus in the software development community that no one assurance
approach (i.e., one "confidence building measure") is adequate for critical software assurance,
and that some integration of the evidence provided by these various approaches must be used to
make decisions about confidence.

E23 TWO PERSON RULE

At least two people shall be thoroughly familiar with the design, code, testing, and operation of
each software module in the system.

E24 PROGRAM PATCH PROHIBITION

Patches shall be prohibited throughout the development process. All software changes shall be
coded in the source language and compiled prior to entry into operational or test equipment.

E.2.5 SOFTWARE DESIGN VERIFICATION AND VALIDATION

The software shall be analyzed throughout the design, development, and maintenance process by
a system safety engineering team to verify and validate that the safety design requirements have
been correctly and completely implemented. Test results shall be analyzed to identify potential
safety anomalies that may occur.

E.2.5.1 CORRELATION OF ARTIFACTS ANALYZED TO ARTIFACTS DEPLOYED

A great deal of the confidence placed in a critical software system is based upon the results of
tests and analyses performed on specific Artifacts produced during system development (e.g.,
source code modules, executable programs produced from the source code). The results of such
tests and analyses contribute to confidence in the deployed system only to the extent that we can
be sure that the tested and analyzed components, and only them, are actually in the deployed
system. There have been many instances where the "wrong version" of a component has
accidentally been introduced into a deployed system and as a result caused unexpected failures or
at least presented a potential hazard.

* Does the SDP describe a thorough CM process that includes version identification, access
control, change audits, and the ability to restore previous revisions of the system?

* Does the CM process rely entirely on manual compliance, or is it supported and enforced
by tools?

E-3

Software System Safety Handbook
Appendix E

* Does the CM process include the ability to audit the version of specific components (e.g.,
through the introduction of version identifiers in the source code that are carried through
into the executable object code)? If not, how is process enforcement audited (i.e., for a
given executable image, how can the versions of the components be determined)?

* s there evidence in the design and source code that the CM process is being adhered to

(e.g., Are version identifiers present in the source code if this is part of the CM process
described)?

* During formal testing, do any problems with inconsistent or unexpected versions happen?

A second issue that affects confidence of correlation between the artifacts analyzed and those
deployed are "tool integrity." Software tools (i.e., computer programs used to analyze, transform,
or otherwise measure or manipulate products of a software development effort) clearly can have
an impact on the level of confidence placed in critical software. All of the analysis of source
code performed can easily be undermined if we discover that the compiler used on the project is
very buggy, for example. In many situations where this is a potential issue (e.g., the certification
of digital avionics), a distinction is drawn between two classes of tools:

* Those that transform the programs or data used in the operational system; (and can
therefore actively introduce unexpected behavior into the system), and

* Those used to evaluate the system (and therefore can at worst contribute to not detecting a
defect).

Clearly there is a limit to how many resources should be applied to, for example, validating the
correctness of an Ada compiler; in fact, a developer may reasonably argue that until there is
evidence of a problem, it is sufficient mitigation to use widely-used commercially available tools,
for example. Still, the program office should have some confidence that the developer is
addressing these issues.

* Does the SDP and/or risk reduction plan include a description of tool qualification criteria
and plans? Does the plan include a description of what the critical tools are (e.g.,
compiler, linker loader) and what the risk mitigation approach is (e.g., use widely
available commercial compilers, establish good support relationship with vendor, canvass
other users of the tools for any know problems)?

* Is there any evidence in the design documentation or source code of "work-arounds"
being introduced to accommodate problems encountered in critical tools? If so, what
steps are being taken to ensure that the problems are fixed and that these problems should
not indicate a general reduced confidence in the tools?

E.2.5.2 CORRELATION OF PROCESS REVIEWED TO PROCESS EMPLOYED

* Confidence in the process used to develop critical software is a key part of overall
confidence in the final system. However, that confidence is of course justified only if
there is reason to believe that the process described is the process applied. The program
office can use milestone reviews as a way to deliberately audit process enforcement and

E-4

Software System Safety Handbook
Appendix E

adherence to the processes described. The use of static analysis and inspection of
artifacts (e.g., design documentation, source code, test plans) can provide increased
confidence that the process is being adhered to (or expose violations of the described
process, which should be given immediate attention - are they an indication that the
process is not being enforced?).

* Are the processes as described in the SDP enforceable and auditable? Specific coding
standards or testing strategies can be enforced and they can be independently audited by a
review of the products; vague or incomplete process descriptions can be very hard to
enforce and to determine if they are being adhered to (which reduces the confidence they
provide with respect to critical software assurance arguments).

* As the development progresses, what is the overall "track record" of compliance with the
processes described in the SDP (as determined by audits of compliance during milestone
reviews)? If there is reason for concern, this should become a separate topic for resolution
between the program office and the developer.

* How does the DA monitor and enforce process compliance by the subcontractors? Is
there evidence that this is being done?

E.2.5.3 REVIEWS AND AUDITS

Desk audits, peer reviews, static and dynamic analysis tools and techniques, and debugging tools
shall be used to verify implementation of design requirements in the source code with particular
attention paid to the implementation of identified safety-critical computing system functions and
the requirements and guidelines provided in this document. Reviews of the software source code
shall ensure that the code and comments within the code agree.

E.3 SYSTEM DESIGN REQUIREMENTS AND GUIDELINES

The requirements and guidelines of this section apply to the general system design.

E.3.1 DESIGNED SAFE STATES

The system shall have at least one safe state identified for each logistic and operational phase.

E3.2 STANDALONE COMPUTER

Where practical, safety-critical functions should be performed on a standalone computer. If this
is not practical, safety-critical functions shall be isolated to the maximum extent practical from
non-critical functions.

E.3.3 EASE OF MAINTENANCE

The system and its software shall be designed for ease of maintenance by future personnel that
are not associated with the original design team. Documentation specified for the computing
system shall be developed to facilitate maintenance of the software. Strict configuration control

Software System Safety Handbook
Appendix E

of the software during development and after deployment is required. The use of techniques for
the decomposition of the software system for ease of maintenance is recommended.

E.3.4 SAFE STATE RETURN

The software shall return hardware subsystems terms under the control of software to a designed
safe state when unsafe conditions are detected. Conditions that can be safely overridden by the
battle short shall be identified and analyses performed to verify their safe incorporation.

E.3.5 RESTORATION OF INTERLOCKS

Upon completion of tests and/or training wherein safety interlocks are removed, disabled or
bypassed, restoration of those interlocks shall be verified by the software prior to being able to
resume normal operation. While overridden, a display shall be made on the operator's or test
conductor's console of the status of the interlocks, if applicable.

E.3.6 INPUT/OUTPUT REGISTERS

Input/output registers and ports shall not be used for both safety-critical and non-critical
functions unless the same safety design criteria are applied to the non-critical functions.

E.3.7 EXTERNAL HARDWARE FAILURES

The software shall be designed to detect failures in external hardware input or output hardware
devices and revert to a safe state upon their occurrence. The design shall consider potential
failure modes of the hardware involved.

E.3.8 SAFETY KERNEL FAILURE

The system shall be designed such that a failure of the safety kernel (when implemented) will be
detected and the system returned to a designated safe state.

E.3.9 CIRCUMVENT UNSAFE CONDITIONS

The system design shall not permit detected unsafe conditions to be circumvented. If a
"battleshort" or "safety arc" condition is required in the system, it shall be designed such that it
cannot be activated either inadvertently or without authorization.

E.3.10 FALLBACK AND RECOVERY

The system shall be designed to include fallback and recovery to a designed safe state of reduced
system functional capability in the event of a failure of system components.

E.3.11 SIMULATORS

If simulated items, simulators, and test sets are required, the system shall be designed such that
the identification of the devices is fail safe and that operational hardware cannot be inadvertently
identified as a simulated item, simulator or test set.

E-6

Software System Safety Handbook
Appendix E

E.3.12 SYSTEM ERRORS LOG

The software shall make provisions for logging all system errors detected. The operator shall
have the capability to review logged system errors. Errors in safety-critical routines shall be
highlighted and shall be brought to the operator's attention as soon as practical after their
occurrence.

E.3.13 POSITIVE FEEDBACK MECHANISMS

Software control of critical functions shall have feedback mechanisms that give positive
indications of the function’s occurrence.

E.3.14 PEAK LOAD CONDITIONS

The system and software shall be designed to ensure that design safety requirements are not
violated under peak load conditions.

E.3.15 ENDURANCE ISSUES

Although software does not "wear out," the context in which a program executes can degrade
with time. Systems that are expected to operate continuously are subjected to demands for
endurance - the ability to execute for the required period of time without failure. As an example
of this, the failure of a Patriot missile battery in Dhahran during the Persian Gulf War was traced
to the continuous execution of tracking and guidance software for over 100 hours; the system
was designed and tested against a 24-hour upper limit for continuous operation. Long-duration
programs are exposed to a number of performance and reliability problems that are not always
obvious and that are difficult to expose through testing. This makes a careful analysis of
potential endurance-related defects an important risk-reduction activity for software to be used in
continuous operation.

» Has the developer explicitly identified the duration requirements for the system? Has the
developer analyzed the behavior of the design and implementation if these duration
assumptions are violated? Are any of these violations a potential hazard?

* Has the developer identified potential exposure to the exhaustion of finite resources over
time, and are adequate detection and recovery mechanisms in place to handle these?
Examples are as follows:

v' Memory (e.g., heap leaks from incomplete software storage reclamation),

v’ File handles, Transmission Control Protocol ports, etc. (e.g., if not closed under error
conditions), and

v' Counter overflow (e.g., 8-bit counter and > 255 events was a factor in the failure of
Theriac-25 radiation treatment machines).

* Has the developer identified potential exposure to performance degradation over time,
and are adequate deduction and recovery mechanisms in place to handle these? Examples
are memory and disk fragmentation that can result in increased latency.

Software System Safety Handbook
Appendix E

* Has the developer analyzed increased exposure to cumulative effects over time, and are
adequate detection and recovery mechanisms in place to handle these so that they do not
present any hazards? Examples include cumulative drift in clocks, cumulative jitter in
scheduling operations, and cumulative rounding error in floating point and fixed-point
operations.

E.3.16 ERROR HANDLING

Causal analyses of software defects frequently identify error handling as a problem area. For
example, one industry study observed that a common defect encountered was "failure to consider
all error conditions or error paths." A published case study of a fault tolerant switching system
indicated that approximately two thirds of the system failures that were traceable to design faults
were due to faults in the portion of the system that was responsible for detecting and responding
to error conditions. The results of a Missile Test and Readiness Equipment (MITRE) internal
research project on Error Handling in Large Software Systems also indicate that error handling is
a problematic issue for many software systems. In many cases, the problems exposed were the
result of oversight or simple logic errors. A key point is that these kinds of errors have been
encountered in some software that is far along in the development process and/or under careful
scrutiny because it is mission critical software. The presence of simple logic errors such as these
illustrates the fact that error handling is typically not as carefully inspected and tested as other
aspects of system design. It is important that the program office gain adequate insight into the
developer's treatment of error handling in critical systems.

* Has the developer clearly identified an overall policy for error handling? Have the
specific error detection and recovery situations been adequately analyzed? Has the
developer defined their relationship between exceptions, faults, and "unexpected" results?

* Are different mechanisms used to convey this status of computations? What are they?
[e.g., Ada exceptions, OS signals, return codes, messages]. If return codes and
exceptions are both used, are there guidelines for when each is to be used? What are these
guidelines and the rationale for them, and how are they enforced? Are return codes and
exceptions used in distinct "layers of abstraction" (e.g., return codes only in calls to
COTS OS services) or freely intermixed throughout the application? How are return
codes and exceptions mapped to each other? In this mapping, what is done if an
unexpected return code is returned, or an unexpected exception is encountered?

» Has the developer determined the costs of using exceptions for their compiler(s)? What is
the space and runtime overhead of having one or more exception handlers in a
subprogram and a block statement, and is the overhead fixed or a function of the number
of handlers? How expensive is propagation, both explicit and implicit?

* Are derived types used? If so, are there any guidelines regarding the exceptions that can
be raised by the derived operations associated with the derived types? How are they
enforced?

* Are there guidelines regarding exceptions that can be propagated during task rendezvous?
How are they reinforced and tested?

E-8

Software System Safety Handbook
Appendix E

* Is program suppression ever used? If so, what are the restrictions on its use, and how are
they enforced? What is the rationale for using/not-using program suppression? If it is
used, are there any guidelines for explicit checking that must be in the code for critical
constraints in lieu of the implicit constraint checks? If not, how is the reliability of the
code ensured?

* Are there any restrictions on the use of tasks in declarative regions of subprograms (i.e.,
subprograms with dependent tasks)? If so, how are they enforced? How are dependent
tasks terminated when the master subprogram is terminating with an exception, and how
is the suspense of exception propagation until dependent task termination handled?

* What process enforcement mechanisms are used to ensure global consistency among
error handling components? (e.g., we have seen examples of systems where various
subcontractors were under constrained; they each make locally plausible design decisions
regarding error handling policy, but when these components were integrated they were
discovered to be globally inconsistent.)

* Are there guidelines on when exceptions are masked (i.e., a handler for an exception does
not in turn propagate an exception), mapped (i.e., a handler for an exception propagates a
different exception), or propagated? If so, how are they enforced? Are there any
restrictions on the use of the "others" handlers? If so, how are they enforced?

* How does the developer ensure that return codes or status parameters are checked after
every subroutine call, or ensure that failure to check them does not present a hazard?

* Are there any restrictions on the use of exceptions during elaboration? (e.g., checking
data passed to a generic package during installation). Is exception handling during
elaboration a possibility due to initialization functions in declarative regions? If so, how
is this handling tested, and are there design guidelines for exception handling during
elaboration? If not, how are they assured that this does not present a hazard?

E.3.17 REDUNDANCY MANAGEMENT

In order to reduce the vulnerability of a software system to a single mechanical or logic failure,
redundancy is frequently employed. However, the added complexity of managing the
redundancy in fault-tolerant systems may make them vulnerable to additional failure modes that
must be accounted for by the developer. For example, the first shuttle flight and the 44th flight
of NASA's Advanced Fighter Technology Integration (AFTI)-F16 software both exhibited
problems associated with redundancy management. The first shuttle flight was stopped 20
minutes before scheduled launch because of a race condition between the two versions of the
software. The AFTI-F16 had problems related to sensor skew and control law gain causing the
system to fail when each channel declared the others had failed; the analog backup was not
selected, because the simultaneous failure of two channels was not anticipated.

If the developer's design includes redundancy (e.g., duplicate independent hardware, or "N
version programming"), have the additional potential failure modes from the redundancy scheme

Software System Safety Handbook
Appendix E

been identified and mitigated? Examples include sensor skew, multiple inconsistent states, and
common mode failures.

E.3.18 SAFE MODES AND RECOVERY

A common design idiom for critical software systems is that they are "self checking and self
protecting." This means that software components "protect" themselves from invalid requests or
invalid input data by frequently checking for violations of assumptions or constraints. In
addition, they check the results of service requests to other system components to make sure that
they are behaving as expected. Finally, such systems typically provide for the checking of
internal intermediate states to determine if the routine is itself working as expected. Violations
of any of these kinds of checks can require transition to a safe state if the failure is serious or if
the confidence in further correct execution has been seriously reduced. Failure to address this
"defensive" approach can allow a wide variety of failures to propagate throughout the system in
unexpected and unpredictable ways, potentially resulting in a hazard.

* Does the developer identify a distinct safe mode or set of safe modes? Has the analysis of
these safe modes adequately considered the transition to these safe modes from
potentially hazardous states (e.g., internal inconsistency)?

* Does the design include acceptable safety provisions upon detection of an unsafe state?

* Does the design include assertion checks or other mechanisms for the regular run-time
calibration of internal logic consistency?

* Does the developer provide for an orderly system shutdown as a result of operator
shutdown instructions, power failure, etc.?

* Does the developer explicitly define the protocols for any interactions between the system
and the operational environment? If anything other than the expected sequences or
interlocks is encountered, does the system design detect this and transition to a safe state?

* Does the developer account for all power-up self-test and handshaking with other
components in the operational environment in order to ensure execution begins in a
predicted and safe state?

E.3.19 ISOLATION AND MODULARITY

The practical limits on resources for critical software assurance are consistent with the consensus
in the software development community that a major design goal for critical software is to keep
the critical portions small and isolated from the rest of the system. The program office can
evaluate evidence provided by the developer that indicates the extent to which this isolation has
been a design goal and the extent to which the implementation has successfully realized this goal.
Confidence that unanticipated events or latent defects in the rest of the software will not
introduce an operational hazard is in part correlated with the confidence that such isolation has
been achieved.

E-10

Software System Safety Handbook
Appendix E

* Does the developer's design provide explicit evidence of an analysis of the criticality of
the components and functions (i.e., does the design reflect an analysis of which functions
can introduce a hazard)?

* Does the developer's design and implementation provide evidence that in critical portions
of the software, coupling has been kept to a minimum (e.g., are there restrictions on
shared variables and side-effects for procedures and functions)?

* Does the developer's design include attention to the implementation of "firewalls" in the
software - boundaries where propagation of erroneous values is explicitly checked and
contained? Do critical portions of code perform consistency checking of data values
provided to them both by "clients" (i.e., software using the critical software as a service)
and by the software services the critical software calls (e.g., OS services)?

* Does the critical software design and implementation include explicit checks of
intermediate states during computation, in order to detect possible corruption of the
computing environment (e.g., range checking for an intermediate product in an
algorithm)?

* Does the developer provide the criteria for determining what software is critical, and is
there evidence that these criteria were applied to the entire software system? How does
the developer provide evidence that the portions considered non-critical in fact will not
introduce a hazard?

E4 POWER-UP SYSTEM INITIALIZATION REQUIREMENTS

The following requirements apply to the design of the power subsystem, power control, and
power-on initialization for safety-critical applications of computing systems.

E4.1 POWER-UP INITIALIZATION

The system shall be designed to power up in a safe state. An initialization test shall be
incorporated in the design that verifies that the system is in a safe state and that safety-critical
circuits and components are tested to ensure their safe operation. The test shall also verify
memory integrity and program load.

E4.2 POWER FAULTS

The system and computing system shall be designed to ensure that the system is in a safe state
during power up, intermittent faults or fluctuations in the power that could adversely affect the
system, or in the event of power loss. The system and/or software shall be designed to provide
for a safe, orderly shutdown of the system due to either a fault or power down, such that
potentially unsafe states are not created.

E-11

Software System Safety Handbook
Appendix E

E4.3 PRIMARY COMPUTER FAILURE

The system that shall be designed such that a failure of the primary control computer will be
detected and the system returned to a safe state.

E44 MAINTENANCE INTERLOCKS

Maintenance interlocks, safety interlocks, safety handles, and/or safety pins shall be provided to
preclude hazards to personnel maintaining the computing system and its associated equipment.
Where interlocks, etc. must be overridden to perform tests or maintenance, they shall be
designed such that they cannot be inadvertently overridden, or left in the overridden state once
the system is restored to operational use. The override of the interlocks shall not be controlled by
a computing system.

E4.5 SYSTEM-LEVEL CHECK

The software shall be designed to perform a system-level check at power up to verify that the
system is safe and functioning properly prior to application of power to safety-critical functions
including hardware controlled by the software. Periodic tests shall be performed by the software
to monitor the safe state of the system.

E4.6 CONTROL FLOW DEFECTS

Control flow refers to the sequencing of instructions executed while a program is running. The
consequence of defects in control flow may be program termination (e.g., when an Ada exception
propagates to the outermost scope, or the program attempts to execute an illegal instruction or to
branch to an invalid region of memory). What is more difficult to detect, and more problematic,
is that the consequence of a control flow defect may simply be continued execution in an invalid
or unpredictable state. For example, a "computed go-to" (e.g., using base and displacement
registers in an assembly language program) may branch to a legitimate instruction sequence that
is simply not the correct sequence given the current state of the system. Therefore, for a critical
system, evidence must be presented that these kinds of defects are avoided or mitigated.

» If'the developer is using assembly language, are there any computed control-flow
statements? That is, are there any branches or jumps to an address that is computed (e.g.,
base and displacement registers) rather than a static symbolic label? If so, how does the
developer ensure that these address computations never result in a "wild jump," or that
such wild jumps do not represent a hazard?

* In Ada functions, there may be paths where control can "fall through." (i.e., the function
terminates in a statement other than a return or an exception propagation.) This is an
invalid control flow and will result in the propagation of the pre-defined Ada exception
Program_Error. How does the developer ensure that either this will not happen, or that
the propagation of Program_Error from a function will not represent a hazard?

o If'the developer is using the C programming language, is the C facility of passing
addresses of functions as arguments ("funargs") used? If so, how does the developer

E-12

Software System Safety Handbook
Appendix E

ensure that all calls to a function pointed to by a funarg are valid, or that no hazards result
from invalid funargs?

Since Ada is used, how does the developer ensure that no exception can propagate to the
outermost scope and terminate the program (or how is this dealt with so that such
termination is not a hazard)? Are restrictions on exceptions that can be propagated from
specific routines present? (e.g., are only a restricted set of exceptions allowed to
propagate to a caller?) If there are such restrictions, how are they enforced? If not, how
does the developer provide assurance that all potential exceptions are handled?

A second timing-related failure mode for software is the existence of race conditions:
activities that execute concurrently, and for which the result depends on the sequencing of
activity. For example, if Ada tasking is used and two tasks concurrently access and
change a device, the final result of the computations may depend on which task is the first
to access the device (which task "won the race"). In Ada, the scheduling of eligible
concurrent tasks is non-deterministic, which means that two consecutive executions with
the same data may run differently. Note that the race need not be between tasks; in the
fatal software failures of the Theriac-25 radiation treatment devices, one failure mode was
a race condition between internal tasks and the operator's timing for screen update and
entry. These kinds of failure modes are often difficult to isolate, repeat, and correct once
a system has been deployed; they are equally difficult to detect during testing and so have
caused some extremely subtle latent defects in deployed software (e.g., the first attempt to
launch the Columbia Space Shuttle was aborted 20 minutes before launch due to a latent
race condition that had a 1-in-67 chance of being exposed at each system power-up. The
program office should look for evidence that all potential hazards resulting from timing
and sequencing have been systematically considered, and any hazards that are identified
are mitigated.

Has the developer clearly presented the concurrent requirements (explicit or derived) for
the system? Have the timing and sequencing consequences been given significant
attention with respect to repeatable behavior and hazard identification and mitigation for
the concurrent?

Has the developer identified all real-time requirements (e.g., for reading sensor data, for
interacting with devices, for constraints imposed by other systems the application
interacts with)? Would the consequences of failing to meet any of those requirements
represent a hazard? If so, what hazard mitigation has the developer used? Note that real-
time requirements not only include deadlines, but upper and lower bounds on event
timing (e.g., the minimum interval between consecutive packets on a communications
channel, or time-out triggers).

If there are any real-time requirements that are critical (i.e., failing to meet them would
present a hazard), how has the developer identified and controlled all sources of
unpredictable timing, including upper and lower bounds on device latency (e.g.,
secondary storage), upper and lower bounds on the timing characteristics of Ada language
features that may vary widely (e.g., exception propagation, use of dynamic memory for
access types, use of the delay statement, task rendezvous and termination), and upper and

E-13

Software System Safety Handbook
Appendix E

lower bounds on the software' s interaction with other subsystems (e.g., burst mode or
failed communications, data rates exceeding or below expected values, time-outs for
failed hardware).

* Have all control and data flows where there is potential interference or shared data among
multiple threads of control (e.g., Ada tasks, OS processes) or multiple interrupt handlers
been identified by the developer? If so, has the developer identified all potential race
conditions? How has the developer ensured that either there are no race conditions that
could present a hazard or that such hazards are mitigated? Note that in Ada, the
interleaved update of shared variables by multiple Ada tasks is erroneous; the results are,
therefore, unpredictable.

* Has the developer identified potential hazards resulting from sequencing errors? Even for
single threads of control there are potential failure modes related to sequencing errors.
For example, in Ada, calling a function before the function body has been elaborated is an
example of access before elaboration, and it results in Program_Error being raised. The
initial elaboration sequence is an important aspect of program correctness for non-trivial
Ada programs, and is an example of the kinds of sequencing failures that the developer
should review for identification of possible hazards and the mitigation of any such
hazards discovered. Another sequencing failure example is calling an operation before
performing any required initialization.

E.5 COMPUTING SYSTEM ENVIRONMENT REQUIREMENTS AND
GUIDELINES

The requirements and guidelines of this section apply to the design and selection of computers,
microprocessors, programming languages, and memories for safety-critical applications in
computing systems.

E.5.1 HARDWARE AND HARDWARE/SOFTWARE INTERFACE

REQUIREMENTS
« CPU,
* Memory,

* Failure in the computing environment,

e Hardware and software interfaces,

e Self-test Features,

* Watchdog timers, periodic memory checks, operational checks,
* System utilities,

* Compilers, assemblers, translators, and OSs,

* Diagnostic and maintenance features, and

E-14

Software System Safety Handbook
Appendix E

Memory diagnosis.

E.5.1.1 FAILURE IN THE COMPUTING ENVIRONMENT

An application program exists in the context of a computing environment - the software and
hardware that collectively support the execution of the program. Failures in this environment can
result in a variety of failures or unexpected behavior in the application program and, therefore,
must be considered in a hazard analysis. For some of these failure modes (e.g., program
overwrite of storage), it is particularly difficult to completely predict the consequences (e.g.,
because it depends on what region is overwritten and what pattern is written there); the burden of
proof is, therefore, on the developer to provide evidence either that there is no exposure to these
kinds of failure or that such failures do not represent a potential hazard.

E.5.2

Has the developer identified the situations in which the application can corrupt the
underlying computing environment? Examples include the erroneous writing of data to
the wrong locations in storage (by writing to the 11th element of a 10 element array, for
example, or through pointer manipulation in "C" or unchecked conversion or use of
pragma Interface in Ada). Has Ada's pragma Suppress been used? If so, how does the
developer ensure that such storage corruption is not being missed by removing the
runtime checks? Note that if pragma Suppress is used and the detection of a constraint
violation is masked, the results are unpredictable (the program is "erroneous"). Has the
developer provided evidence that the software's interaction with the hardware does not
corrupt the computing environment in a way that introduces a hazard (e.g., setting a
program status word to an invalid state, or sending invalid control sequences to a device
controller)?

Has the developer analyzed potential failure modes of the Ada Runtime Environment
(ARTE), the host OS or executive, and any other software components (e.g., Data Base
Management System) used in conjunction with the application for any hazards that they
could introduce? What evidence does the developer provide that either there are no
failure modes that present a hazard or that the identified hazards have been mitigated
[e.g., what evidence does the developer provide for the required level of confidence in the
ARTE, OS, etc.? (e.g., for commercial avionics certification and other safety-critical
domains, high assurance or even "certified" subset ARTEs have been used)].

Has the developer provided evidence that data consistency management has been
addressed adequately where it can affect critical functions? For example, is file system
integrity checked at startup? Are file system transactions atomic, or is there a mechanism
for backing out from corrupted transactions?

CPU SELECTION

The following guidelines apply to the selection of CPUs:

CPUs that process entire instructions or data words are preferred to those that multiplex
instructions or data (e.g., an 8-bit CPU is preferred to a 4-bit CPU emulating an 8-bit
machine).

E-15

Software System Safety Handbook
Appendix E

e (CPUs with separate instructions and data memories and busses are preferred to those
using a common data/instruction buss. Alternatively, memory protection hardware, either
segment or page protection, separating program memory and data memory is acceptable.

* CPUs, microprocessors and computers that can be fully represented mathematically are
preferred to those that cannot.

E5.3 MINIMUM CLOCK CYCLES

For CPUs that do not comply with the guidelines above, or those used at the limits of their design
criteria (e.g., at or above maximum clock frequency), analyses and measurements shall be
conducted to determine the minimum number of clock cycles that must occur between functions
on the buss to ensure that invalid information is not picked up by the CPU. Analyses shall also
be performed to ensure that interfacing devices are capable of providing valid data within the
required time frame for CPU access.

E.54 READ ONLY MEMORIES

Where Read Only Memories (ROM) are used, positive measures shall be taken to ensure that the
data cannot be corrupted or destroyed.

E.6 SELF-CHECK DESIGN REQUIREMENTS AND GUIDELINES

The design requirements of this section provide for self-checking of the programs and computing
system execution.

E.6.1 WATCHDOG TIMERS

Watchdog timers or similar devices shall be provided to ensure that the microprocessor or
computer is operating properly. The timer reset shall be designed such that the software cannot
enter an inner loop and reset the timer as part of that loop sequence. The design of the timer shall
ensure that failure of the primary CPU clock cannot compromise its function. The timer reset
shall be designed such that the system is returned to a known safe state and the operator alerted
(as applicable).

E.6.2 MEMORY CHECKS

Periodic checks of memory, instruction, and data buss(es) shall be performed. The design of the
test sequence shall ensure that single point or likely multiple failures are detected. Checksum of
data transfers and Program Load Verification checks shall be performed at load time and
periodically thereafter to ensure the integrity of safety-critical code.

E.6.3 FAULT DETECTION

Fault detection and isolation programs shall be written for safety-critical subsystems of the
computing system. The fault detection program shall be designed to detect potential safety-
critical failures prior to the execution of the related safety-critical function. Fault isolation

E-16

Software System Safety Handbook
Appendix E

programs shall be designed to isolate the fault to the lowest level practical and provide this
information to the operator or maintainer.

E.6.4 OPERATIONAL CHECKS

Operational checks of testable safety-critical system elements shall be made immediately prior to
performance of a related safety-critical operation.

E.7 SAFETY-CRITICAL COMPUTING SYSTEM FUNCTIONS
PROTECTION REQUIREMENTS AND GUIDELINES

The design requirements and guidelines of this section provide for protection of safety-critical
computing system functions and data.

E.71 SAFETY DEGRADATION

Other interfacing automata and software shall design the system such that automata and software
shall prevent degradation of safety.

E.7.2 UNAUTHORIZED INTERACTION

The software shall be designed to prevent unauthorized system or subsystem interaction from
initiating or sustaining a safety-critical function sequence.

E.7.3 UNAUTHORIZED ACCESS

The system design shall prevent unauthorized or inadvertent access to or modification of the
software (source or assembly) and object code. This includes preventing self-modification of the
code.

E.74 SAFETY KERNEL ROM

Safety kernels should be resident in non-volatile ROM or in protected memory that cannot be
overwritten by the computing system.

E.7.5 SAFETY KERNEL INDEPENDENCE

A safety kernel, if implemented, shall be designed and implemented in such a manner that it
cannot be corrupted, misdirected, delayed, or inhibited by any other program in the system.

E.7.6 INADVERTENT JUMPS

The system shall detect inadvertent jumps within or into SCCSFs; return the system to a safe
state, and, if practical, perform diagnostics and fault isolation to determine the cause of the
inadvertent jump.

E-17

Software System Safety Handbook
Appendix E

E.7.7 LOAD DATA INTEGRITY

The executive program or OS shall ensure the integrity of data or programs loaded into memory
prior to their execution.

E.7.8 OPERATIONAL RECONFIGURATION INTEGRITY

The executive program or OS shall ensure the integrity of the data and programs during
operational reconfiguration.

E.8 INTERFACE DESIGN REQUIREMENTS

The design requirements of this section apply to the design of input/output interfaces.

E.8.1 FEEDBACK LOOPS

Feedback loops from the system hardware shall be designed such that the software cannot cause a
runaway condition due to the failure of a feedback sensor. Known component failure modes
shall be considered in the design of the software and checks designed into the software to detect
failures.

E.8.2 INTERFACE CONTROL

SCCSFs and their interfaces to safety-critical hardware shall be controlled at all times, i.e., the
interface shall be monitored to ensure that erroneous or spurious data does not adversely affect
the system, that interface failures are detected, and that the state of the interface is safe during
power-up, power fluctuations and interruptions, and in the event of system errors or hardware
failures.

E.8.3 DECISION STATEMENTS

Decision statements in safety-critical computing system functions shall not rely on inputs of all
ones or all zeros, particularly when this information is obtained from external sensors.

E.8.4 INTER-CPU COMMUNICATIONS

Inter-CPU communications shall successfully pass verification checks in both CPUs prior to the
transfer of safety-critical data. Periodic checks shall be performed to ensure the integrity of the
interface. Detected errors shall be logged. If the interface fails several consecutive transfers, the
operator shall be alerted and the transfer of safety-critical data terminated until diagnostic checks
can be performed.

E.8.5 DATA TRANSFER MESSAGES

Data transfer messages shall be of a predetermined format and content. Each transfer shall
contain a word or character string indicating the message length (if variable), the type of data and
content of the message. As a minimum, parity checks and checksums shall used for verification

E-18

Software System Safety Handbook
Appendix E

of correct data transfer. CRCs shall be used where practical. No information from data transfer
messages shall be used prior to verification of correct data transfer.

E.8.6 EXTERNAL FUNCTIONS

External functions requiring two or more safety-critical signals from the software (e.g., arming of
an ignition safety device or arm fire device and release of an air launched weapon) shall not
receive all of the necessary signals from a single input/output register or buffer.

E.8.7 INPUT REASONABLENESS CHECKS

Limit and reasonableness checks, including time limits, dependencies, and reasonableness
checks, shall be performed on all analog and digital inputs and outputs prior to safety-critical
functions' execution based on those values. No safety-critical functions shall be executable based
on safety-critical analog or digital inputs that cannot be verified.

E.8.8 FULL SCALE REPRESENTATIONS

The software shall be designed such that the full scale and zero representations of the software
are fully compatible with the scales of any digital-to-analog, analog-to-digital, digital-to-synchro,
and/or synchro-to-digital converters.

E.9 HUMAN INTERFACE

The design requirements of this section apply to the design of the human interface to safety-
critical computing systems.

E.91 OPERATOR/COMPUTING SYSTEM INTERFACE
e Computer/Human Interface (CHI) Issues,
e Displays,

* Duplicated where possible, SCCSF displays to be duplicated by non-software generated
output, designed to reduce human errors, quality of display, clear and concise,

* Hazardous condition alarms/warnings,

» Easily distinguished between types of alerts/warning, corrective action required to clear,
e Process cancellation,

e Multiple operator actions to initiate hazardous function, and

* Detection of improper operator entries.

E-19

Software System Safety Handbook
Appendix E

E.9.1.1 COMPUTER/HUMAN INTERFACE ISSUES

CHI issues are not software issues per se - they are really a distinct specification and design issue
for the system. However, many of the CHI functions will be implemented in software, and CHI
issues frequently are treated at the same time as software in milestone reviews.

* Has the developer explicitly addressed the safety-critical aspects of the design of the
CHI? Has this included analysis of anticipated single and multiple operator failures?
What kind of human factors, ergonomic, and cognitive science analyses were done (e.g.,
of cognitive overload, ambiguity of display information)?

* Does the design ensure that invalid operator requests are flagged and identified as such to
the operator (vs. simply ignoring them or mapping them silently to "correct" values)?

* Does the developer ensure that the system always requires a minimum of two
independent commands to perform safety-critical function? Before initiating any critical
sequence, does the design require an operator response or authorization?

* Does the developer ensure that there are no "silent mode changes" that can put the system
in a different safety-related state without operator awareness (i.e., does the design not
allow critical mode transitions to happen with notification)?

* Does the developer ensure that there is a positive reporting of changes of safety-critical
states?

* Does the system design provide for notification that a safety function has been executed,
and is the operator notified of the cause?

* Are all critical inputs clearly distinguished? Are all such inputs checked for range and
consistency validity?

E9.2 PROCESSING CANCELLATION

The software shall be designed such that the operator may cancel current processing with a single
action and have the system revert to a designed safe state. The system shall be designed such that
the operator may exit potentially unsafe states with a single action. This action shall revert the
system to a known safe state. (e.g., the operator shall be able to terminate missile launch
processing with a single action which shall safe the missile.) The action may consist of pressing
two keys, buttons, or switches at the same time. Where operator reaction time is not sufficient to
prevent a mishap, the software shall revert the system to a known safe state, report the failure,
and report the system status to the operator.

E.9.3 HAZARDOUS FUNCTION INITIATION

Two or more unique operator actions shall be required to initiate any potentially hazardous
function or sequence of functions. The actions required shall be designed to minimize the
potential for inadvertent actuation, and shall be checked for proper sequence.

E-20

Software System Safety Handbook
Appendix E

E.94 SAFETY-CRITICAL DISPLAYS

Safety-critical operator displays, legends and other interface functions shall be clear, concise, and
unambiguous, and where possible, be duplicated using separate display devices.

E.9.5 OPERATOR ENTRY ERRORS

The software shall be capable of detecting improper operator entries or sequences of entries or
operations and prevent execution of safety-critical functions as a result. It shall alert the operator
to the erroneous entry or operation. Alerts shall indicate the error and corrective action. The
software shall also provide positive confirmation of valid data entry or actions taken (i.e., the
system shall provide visual and/or aural feedback to the operator such that the operator knows
that the system has accepted the action and is processing it). The system shall also provide a
real-time indication that it is functioning. Processing functions requiring several seconds or
longer shall provide a status indicator to the operator during processing.

E.9.6 SAFETY-CRITICAL ALERTS

Alerts shall be designed such that routine alerts are readily distinguished from safety-critical
alerts. The operator shall not be able to clear a safety-critical alert without taking corrective
action or performing subsequent actions required to complete the ongoing operation.

E.9.7 UNSAFE SITUATION ALERTS

Signals alerting the operator to unsafe situations shall be directed as straightforward as practical
to the operator interface.

E.9.8 UNSAFE STATE ALERTS

If an operator interface is provided and a potentially unsafe state has been detected, the system
shall alert the operator to the anomaly detected, the action taken, and the resulting system
configuration and status.

E.10 CRITICAL TIMING AND INTERRUPT FUNCTIONS

The following design requirements and guidelines apply to safety-critical timing functions and
interrupts.

E.10.1 SAFETY-CRITICAL TIMING

Safety-critical timing functions shall be controlled by the computer and shall not rely on human
input. Safety-critical timing values shall not be modifiable by the operator from system consoles,
unless specifically required by the system design. In these instances, the computer shall
determine the reasonableness timing values.

E-21

Software System Safety Handbook
Appendix E

E.10.2 VALID INTERRUPTS

The software shall be capable of discriminating between valid and invalid (i.e., spurious) external
and/or internal interrupts. Invalid interrupts shall not be capable of creating hazardous
conditions. Valid external and internal interrupts shall be defined in system specifications.
Internal software interrupts are not a preferred design as they reduce the analyzability of the
system.

E.10.3 RECURSIVE LOOPS

Recursive and iterative loop shall have a maximum documented execution time. Reasonableness
checks will be performed to prevent loops from exceeding the maximum execution time.

E.104 TIME DEPENDENCY

The results of a program should not be dependent on the time taken to execute the program or the
time at which execution is initiated. Safety-critical routines in real-time programs shall ensure
that the data used is still valid (e.g., by using senescence checks).

E.11 SOFTWARE DESIGN AND DEVELOPMENT REQUIREMENTS
AND GUIDELINES

The requirements and guidelines of this section apply to the design and coding of the software.

E.11.1 CODING REQUIREMENTS/ISSUES
The following applies to the software-coding phase.

* Language issues,
v Ada, C++,

* Logic errors,

¢ Cumulative data errors,

e Dirift in clocks, round-off errors,
* Specific features/requirements,

* No unused executable code, no unreferenced variables, variable names and declaration
for SCFs, loop entry/exits, use of annotation within code, assignment statements,
conditional statements, strong data typing, ban of global variables for SCFs, safety-
critical files

* All safety-critical software to occupy same amount of memory,
» Single execution path for safety-critical functions,

* No unnecessary/undocumented features,

E-22

Software System Safety Handbook
Appendix E

* No bypass of required system functions, and

* Prevention of runaway feedback loops.

E.11.1.1 ADA LANGUAGE ISSUES

The Ada programming language provides considerable support for preventing many causes of
unpredictable behavior allowed in other languages. For example, unless pragma Suppress or
unchecked conversion (and certain situations with pragma Interface) are used, implicit constraint
checks prevent the classic "C" programming bug of writing a value into the 11th element of a 10-
element array (thus overwriting and corrupting an undetermined region of memory, with
unknown results that can be catastrophic). However, the Ada language definition identifies
specific rules to be obeyed by Ada programs but which no compile-time or run-time check is
required to enforce. If a program violates one of these rules, the program is said to be erroneous.
According to the language definition, the results of executing an erroneous program are
undefined and unpredictable. For example, there is no requirement for a compiler to detect the
reading of uninitialized variables or for this error to be detected at run-time. If a program does
execute such a use of uninitialized variables, the effects are undefined: the program might raise
an exception (e.g., Program Error, Constraint Error), or simply halt, or some random value may
be found in the variable, or the compiler may have a pre-defined value for references to
uninitialized variables (e.g., 0). For obvious reasons, the overall confidence that the program
office has in the predictable behavior of the software will be seriously undermined if there are
shown to be instances of "erroneous" Ada programs for which no evidence is provided that they
do not present a hazard. There are several other aspects of the use of Ada that can introduce
unpredictable behavior, timing, or resource usage, while not strictly erroneous.

e Are all constraints static? If not, how are the following sources of unpredictable behavior
shown to prevent a hazard: Constraint Error raised?

e Use of unpredictable memory due to elaboration of non-static declarative items,

* For Ada floating point values, are the relational operators "<", >", ""= and "/="
precluded? Because of the way floating point comparisons are defined in Ada the values
of the listed operators depend on the implementation. "<=" and ">=" do not depend on
the implementation, however. Note that for Ada floating point it is not guaranteed that,
for example, "X <= Y" is the same as "not (X>Y)". How are floating point, operations
ensured to be predictable or how is the lack of predictability shown to not represent a
hazard by the developer?

* Does the developer use address clauses? If so, what restrictions are enforced on the
address clauses to prevent attempts to the overlay of data, which results in an erroneous
program?

» If Ada access types are used, has the developer identified all potential problems that can
result with access types (unpredictable memory use, erroneous programs if
Unchecked Deallocation is used and there are references to a deallocated object, aliasing,

E-23

Software System Safety Handbook
Appendix E

unpredictable timing for allocation, constraint checks) and provided evidence that these
do not represent hazards?

If pragma Interface is used, does the developer ensure that no assumptions about data
values are violated in the foreign language code that might not be detected upon returning
to the Ada code (e.g., passing a variable address to a C routine that violates a range
constraint - this may not be detected upon return to Ada code, enabling the error to
propagate before detection)?

Does the developer ensure that all out and in out mode parameters are set before returning
from a procedure or entry call unless an exception is propagated, or provide evidence that
there is no case where returning with an unset parameter (and therefore creating an
erroneous program) could introduce a hazard?

Since Ada supports recursion, has the developer identified restrictions on the use of
recursion or otherwise presented evidence that recursion will not introduce a hazard (e.g.,
through exhaustion of the stack, or unpredictable storage timing behavior)?

Are any steps taken to prevent the accidental reading of an uninitialized variable in the
program [through coding standards (defect prevention) and code review or static analysis
(defect removal)]? Does the developer know what the selected compiler's behavior is
when uninitialized variables are referenced? Has the developer provided evidence that
there are no instances of reading uninitialized variables that introduce a hazard, as such a
reference results in an erroneous program?

If the pre-defined Ada generic function Unchecked Conversion is used, does the
developer ensure that such conversions do not violate constraints of objects of the result
type, as such a conversion results in an erroneous program?

In Ada, certain record types and private types have discriminants whose values
distinguish alternative forms of values of one of these types. Certain assignments and
parameter bindings for discriminants result in an erroneous program. If the developer
uses discriminants, how does he ensure that such erroneous uses do not present a hazard?

E11.2 MODULAR CODE

Software design and code shall be modular. Modules shall have one entry and one exit point.

E.11.3 NUMBER OF MODULES

The number of program modules containing safety-critical functions shall be minimized where
possible within the constraints of operational effectiveness, computer resources, and good
software design practices.

E114 EXECUTION PATH

SCCSFs shall have one and only one possible path leading to their execution.

E-24

Software System Safety Handbook
Appendix E

E11.5 HALT INSTRUCTIONS

Halt, stop or wait instructions shall not be used in code for safety-critical functions. Wait
instructions may be used where necessary to synchronize input/output, etc. and when appropriate
handshake signals are not available.

E.11.6 SINGLE PURPOSE FILES

Files used to store safety-critical data shall be unique and shall have a single purpose. Scratch
files, those used for temporary storage of data during or between processes, shall not be used for
storing or transferring safety-critical information, data, or control functions.

E.11.7 UNNECESSARY FEATURES

The operational and support software shall contain only those features and capabilities required
by the system. The programs shall not contain undocumented or unnecessary features.

E.11.8 INDIRECT ADDRESSING METHODS

Indirect addressing methods shall be used only in well-controlled applications. When used, the
address shall be verified as being within acceptable limits prior to execution of safety-critical
operations. Data written to arrays in safety-critical applications shall have the address boundary
checked by the compiled code.

E.11.9 UNINTERRUPTABLE CODE

If interrupts are used, sections of the code which have been defined as uninterruptable shall have
defined execution times monitored by an external timer.

E.11.10 SAFETY-CRITICAL FILES

Files used to store or transfer safety-critical information shall be initialized to a known state
before and after use. Data transfers and data stores shall be audited where practical to allow
traceability of system functioning.

E.11.11 UNUSED MEMORY

All processor memory not used for or by the operational program shall be initialized to a pattern
that will cause the system to revert to a safe state if executed. It shall not be filled with random
numbers, halt, stop, wait, or no-operation instructions. Data or code from previous overlays or
loads shall not be allowed to remain. (Examples: If the processor architecture halts upon receipt
of non-executable code, a watchdog timer shall be provided with an interrupt routine to revert the
system to a safe state. If the processor flags non-executable code as an error, an error handling
routine shall be developed to revert the system to a safe state and terminate processing.)
Information shall be provided to the operator to alert him to the failure or fault observed and to
inform him of the resultant safe state to which the system was reverted.

E-25

Software System Safety Handbook
Appendix E

E.11.12 OVERLAYS OF SAFETY-CRITICAL SOFTWARE SHALL ALL OCCUPY
THE SAME AMOUNT OF MEMORY

Where less memory is required for a particular function, the remainder shall be filled with a
pattern that will cause the system to revert to a safe state if executed. It shall not be filled with
random numbers, halt, stop, no-op, or wait instructions or data or code from previous overlays.

E.11.13 OPERATING SYSTEM FUNCTIONS

If an OS function is provided to accomplish a specific task, operational programs shall use that
function and not bypass it or implement it in another fashion.

E.11.14 COMPILERS

The implementation of software compilers shall be validated to ensure that the compiled code is
fully compatible with the target computing system and application (may be done once for a target
computing system).

E.11.15 FLAGS AND VARIABLES

Flags and variable names shall be unique. Flags and variables shall have a single purpose and
shall be defined and initialized prior to use.

E.11.16 LOOP ENTRY POINT

Loops shall have one and only one entry point. Branches into loops shall not be used. Branches
out of loops shall lead to a single exit point placed after the loop within the same module.

E.11.17 SOFTWARE MAINTENANCE DESIGN

The software shall be annotated, designed, and documented for ease of analysis, maintenance,
and testing of future changes to the software.

E.11.18 VARIABLE DECLARATION

Variables or constants used by a safety-critical function will be declared/initialized at the lowest
possible level

E.11.19 UNUSED EXECUTABLE CODE

Operational program loads shall not contain unused executable code.

E.11.20 UNREFERENCED VARIABLES

Operational program loads shall not contain unreferenced or unused variables or constants.

E-26

Software System Safety Handbook
Appendix E

E.11.21 ASSIGNMENT STATEMENTS

SCCSFs and other safety-critical software items shall not be used in one-to-one assignment
statements unless the other variable is also designated as safety-critical (e.g., shall not be
redefined as another non-safety-critical variable).

E.11.22 CONDITIONAL STATEMENTS

Conditional statements shall have all possible conditions satisfied and under full software control
(i.e. there shall be no potential unresolved input to the conditional statement). Conditional
statements shall be analyzed to ensure that the conditions are reasonable for the task and that all
potential conditions are satisfied and not left to a default condition. All condition statements
shall be annotated with their purpose and expected outcome for given conditions

E.11.23 STRONG DATA TYPING

Safety-critical functions shall exhibit strong data typing. Safety-critical functions shall not
employ a logic "1" and "0" to denote the safe and armed (potentially hazardous) states. The
armed and safe state for munitions shall be represented by at least a unique, four-bit pattern. The
safe state shall be a pattern that cannot, as a result of a one-, two-, or three-bit error, represent the
armed pattern. The armed pattern shall also not be the inverse of the safe pattern. If a pattern
other than these two unique codes is detected, the software shall flag the error, revert to a safe
state, and notify the operator, if appropriate.

E.11.24 TIMER VALUES ANNOTATED

Values for timers shall be annotated in the code. Comments shall include a description of the
timer function, its value and the rationale or a reference to the documentation explaining the
rationale for the timer value. These values shall be verified and shall be examined for
reasonableness for the intended function.

E.11.25 CRITICAL VARIABLE IDENTIFICATION

Safety-critical variables shall be identified in such a manner that they can be readily distinguished
from non-safety-critical variables (e.g., all safety-critical variables begin with a letter S).

E.11.26 GLOBAL VARIABLES

Global variables shall not be used for safety-critical functions.

E.12 SOFTWARE MAINTENANCE REQUIREMENTS AND
GUIDELINES

The requirements and guidelines of this section are applicable to the maintenance of the software
in safety-critical computing system applications. The requirement applicable to the design and
development phase as well as the software design and coding phase are also applicable to the
maintenance of the computing system and software

E-27

Software System Safety Handbook
Appendix E

E121 CRITICAL FUNCTION CHANGES

Changes to SCCSFs on deployed or fielded systems shall be issued as a complete package for the
modified unit or module and shall not be patched.

E.12.2 CRITICAL FIRMWARE CHANGES

When not implemented at the depot level or in manufacturers’ facilities under appropriate QC,
firmware changes shall be issued as a fully functional and tested circuit card. Design of the card
and the installation procedures should minimize the potential for damage to the circuits due to
mishandling, electrostatic discharge, or normal or abnormal storage environments, and shall be
accompanied with the proper installation procedure.

E12.3 SOFTWARE CHANGE MEDIUM

When not implemented at the depot level or in manufacturers’ facilities under appropriate QC,
software changes shall be issued as a fully functional copy on the appropriate medium. The
medium, its packaging, and the procedures for loading the program should minimize the
potential damage to the medium due to mishandling, electrostatic discharge, potential magnetic
fields, or normal or abnormal storage environments, and shall be accompanied with the proper
installation procedure.

EJ124 MODIFICATION CONFIGURATION CONTROL

All modifications and updates shall be subject to strict configuration control. The use of
automated CM tools is encouraged.

E.12.5 VERSION IDENTIFICATION

Modified software or firmware shall be clearly identified with the version of the modification,
including configuration control information. Both physical (e.g., external label) and electronic
(i.e., internal digital identification) "fingerprinting" of the version shall be used.

E.13 SOFTWARE ANALYSIS AND TESTING

The requirements and guidelines of this section are applicable to the software-testing phase.

E.13.1 GENERAL TESTING GUIDELINES

Systematic and thorough testing is clearly required as evidence for critical software assurance;
however, testing is "necessary but not sufficient." Testing is the chief way that evidence is
provided about the actual behavior of the software produced, but the evidence it provides is
always incomplete since testing for non-trivial systems is always a sampling of input states and
not an exhaustive exercise of all possible system states. In addition, many of the testing and
reliability estimation techniques developed for hardware components are not directly applicable
to software; and care must, therefore, be taken when interpreting the implications of test results
for operational reliability.

E-28

Software System Safety Handbook
Appendix E

Testing to provide evidence for critical software assurance differs in emphasis from general
software testing to demonstrate correct behavior. There should be a great deal of emphasis
placed on demonstrating that even under stressful conditions, the software does not present a
hazard; this means a considerable amount of testing for critical software will be fault injection,
boundary condition and out-of-range testing, and exercising those portions of the input space that
are related to potential hazards (e.g., critical operator functions, or interactions with safety-
critical devices). Confidence in the results of testing is also increased when there is evidence that
the assumptions made in designing and coding the system are not shared by the test developers
(i.e., that some degree of independence between testers and developers has been maintained).

Does the developer provide evidence that for critical software testing has addressed not
only nominal correctness (e.g., stimulus/response pairs to demonstrate satisfaction of
functional requirements) but robustness in the face of stress? This includes a systematic
plan for fault injection, testing boundary and out-of-range conditions, testing the behavior
when capacities and rates are extreme (e.g., no input signals from a device for longer than
operationally expected, more frequent input signals from a device than operationally
expected), testing error handling (for internal faults), and the identification and
demonstration of critical software's behavior in the face of the failure of various other
components.

Does the developer provide evidence of the independence of test planning, execution, and
review for critical software? Are unit tests developed, reviewed, executed, and/or
interpreted by someone other than the individual developer? Has some amount of
independent test planning and execution been demonstrated at the integration test level?

Has some amount of independent Navy 'free play" testing been provided? If so, during
this testing is there evidence that the critical software is robust in the face of "unexpected"
scenarios and input behavior, or does this independent testing provide evidence that the
critical software is "fragile"? (Navy free play testing should place a high priority on
exercising the critical aspects of the software and in presenting the system with the kinds
of operational errors and stresses that the system will face in the field.)

Does the developer's software problem tracking system provide evidence that the rate and
severity of errors exposed in testing is diminishing as the system approaches operational
testing, or is there evidence of "thrashing" and increasing fragility in the critical software?
Does the problem tracking system severity classification scheme reflect the potential
hazard severity of an error, so that evidence of the hazard implications of current
Problems can be reviewed?

Has the developer provided evidence that the tests that exercise the system represent a
realistic sampling of expected operational inputs? Has some portion of testing been
dedicated to randomly selected inputs reflecting the expected operational scenarios? (This
is another way to provide evidence that implicit assumptions in the design do not
represent hazards in critical software, since the random inputs will be not selectively
"screened" by implicit assumptions.)

E-29

Software System Safety Handbook
Appendix E

E.13.2 TRAJECTORY TESTING FOR EMBEDDED SYSTEMS

There is a fundamental challenge to the amount of confidence that software testing can provide
for certain classes of programs. Unlike "memory-less" batch programs that can be completely
defined by a set of simple stimulus/response pairs, these programs "appear to run
continuously...One cannot identify discrete runs, and the behavior at any point may depend on
events arbitrarily far in the past." In many systems where there are major modes or distinct
partitioning of the program behavior depending on state, there is mode-remembered data that is
retained across mode-changes. The key issue for assurance is the extent to which these
characteristics have been reflected in the design and especially in the testing of the system. If
these characteristics are ignored and the test set is limited to a simplistic set of stateless
stimulus/response pairs, the extrapolation to the operational behavior of the system is seriously
weakened.

» Has the developer identified the sensitivities to persistent stale and the "input trajectory”
the system has experienced? Is this reflected in the test plans and test descriptions?

* Are the developer's assumptions about prohibited or "impossible" trajectories and mode
changes explicit with respect to critical functions? "There is always the danger that the
model used to determine impossible trajectories over looks the same situation overlooked
by the programmer who introduced a serious bug. It is important that any model used to
eliminate impossible trajectories be developed independently of the program. Most safety
experts would feel more comfortable if some tests were conducted with "crazy"
trajectories."

E.13.3 FORMAL TEST COVERAGE

All software testing shall be controlled by a formal test coverage analysis and document.
Computer-based tools shall be used to ensure that the coverage is as complete as possible.

E13.4 GO/NO-GO PATH TESTING
Software testing shall include GO/NO-GO path testing.

E.13.5 INPUT FAILURE MODES

Software testing shall include hardware and software input failure mode testing.

E.13.6 BOUNDARY TEST CONDITIONS

Software testing shall include boundary, out-of-bounds, and boundary crossing test conditions.

E.13.7 INPUT RATA RATES

Software testing shall include minimum and maximum input data rates in worst case
configurations to determine the system' capabilities and responses to these conditions.

E-30

Software System Safety Handbook
Appendix E

E.13.8 ZERO VALUE TESTING

Software testing shall include input values of zero, zero crossing, and approaching zero from
either direction and similar values for trigonometric functions.

E.13.9 REGRESSION TESTING

SCCSFs in which changes have been made shall be subjected to complete regression testing.

E.13.10 OPERATOR INTERFACE TESTING

Operator interface testing shall include operator errors during safety-critical operations to verify
safe system response to these errors.

E.13.11 DURATION STRESS TESTING

Software testing shall include duration stress testing. The stress test time shall be continued for
at least the maximum expected operating time for the system. Testing shall be conducted under
simulated operational environments. Additional stress duration testing should be conducted to
identify potential critical functions (e.g., timing, data senescence, resource exhaustion, etc.) that
are adversely affected as a result of operational duration. Software testing shall include
throughput stress testing (e.g., CPU, data bus, memory, input/output) under peak loading
conditions.

E-31

Software System Safety Handbook
Appendix F

F. LESSONS LEARNED

F.1 THERAC RADIATION THERAPY MACHINE FATALITIES

F11 SUMMARY

Eleven Therac-25 therapy machines were installed, five in the US and six in Canada. The
Canadian Crown (government owned) company Atomic Energy of Canada Limited (AECL)
manufactured them. The -25 model was an advanced model over earlier models (-6 and -20
models, corresponding to energy delivery capacity) with more energy and automation features.
Although all models had some software control, the -25 model had many new features and had
replaced most of the hardware interlocks with software versions. There was no record of any
malfunctions resulting in patient injury from any of the earlier model Theracs (earlier than the -
25). The software control was implemented in a DEC model PDP 11 processor using a custom
executive and assembly language. A single programmer implemented virtually all of the
software. He had an uncertain level of formal education and produced very little, if any
documentation on the software.

Between June 1985 and January 1987 there were six known accidents involving massive
radiation overdoses by the Therac-25; three of the six resulted in fatalities. The company did not
respond effectively to early reports citing the belief that the software could not be a source of
failure. Records show that software was deliberately left out of an otherwise thorough safety
analysis performed in 1983, which used fault-tree methods. Software was excluded because
“software errors have been eliminated because of extensive simulation and field testing. (Also)
software does not degrade due to wear, fatigue or reproduction process.” Other types of software
failures were assigned very low failure rates with no apparent justification. After a large number
of lawsuits and extensive negative publicity, the company decided to withdraw from the medical
instrument business and concentrate on its main business of nuclear reactor control systems.

The accidents were due to many design deficiencies involving a combination of software design
defects and system operational interaction errors. There were no apparent review mechanisms
for software design or QC. The continuing recurrence of the accidents before effective corrective
action resulted was a result of management’s view. This view had faith in the correctness of the
software without any apparent evidence to support it. The errors were not discovered; because
the policy was to fix the symptoms without investigating the underlying causes, of which there
were many.

F1.2 KEY FACTS

* The software was assumed to be fail-safe and was excluded from normal safety analysis
review.

* The software design and implementation had no effective review or QC practices.

* The software testing at all levels were obviously insufficient, given the results.

Software System Safety Handbook
Appendix F

* Hardware interlocks were replaced by software without supporting safety analysis.
* There was no effective reporting mechanism for field problems involving software.

* Software design practices (contributing to the accidents) did not include basic, shared-
data, and contention management mechanisms normal in multi-tasking software. The
necessary conclusion is that the programmer was not fully qualified for the task.

* The design was unnecessarily complex for the problem. For instance, there were more
parallel tasks than necessary. This was a direct cause of some of the accidents.

F1.3 LESSONS LEARNED

e Changeover from hardware to a software implementation must include a review of
assumptions, physics and rules.

» Testing should include possible abuse or bypassing of expected procedures.

* Design and implementation of software must be subject to the same safety analysis,
review and QC as other parts of the system.

* Hardware interlocks should not be completely eliminated when incorporating software
interlocks.

e Programmer qualifications are as important as qualifications for any other member of the
engineering team.

F.2 MISSILE LAUNCH TIMING CAUSES HANGFIRE

F21 SUMMARY

An aircraft was modified from a hardware-controlled missile launcher to a software-controlled
launcher. The aircraft was properly modified according to standards, and the software was fully
tested at all levels before delivery to operational test. The normal weapons rack interface and
safety overrides were fully tested and documented. The aircraft was loaded with a live missile
(with an inert warhead) and sent out onto the range for a test firing.

The aircraft was commanded to fire the weapon, whereupon it did as designed. Unfortunately,
the design did not specify the amount of time to unlock the holdback and was coded to the
assumption of the programmer. In this case, the assumed time for unlock was insufficient and
the holdback locked before the weapon left the rack. As the weapon was powered, the engine
drove the weapon while attached to the aircraft. This resulted in a loss of altitude and a wild
ride, but the aircraft landed safely with a burned out weapon.

F.2.2 KEY FACTS

* Proper process and procedures were followed as far as specified.

F-2

Software System Safety Handbook
Appendix F

* The product specification was re-used without considering differences in the software
implementation, i.e., the timing issues. Hence, the initiating event was a specification
error.

* While the acquirer and user had experience in the weapons system, neither had
experience in software. Also, the programmer did not have experience in the details of
the weapons system. The result was that the interaction between the two parts of the
system was not understood by any of the parties.

F.2.3 LESSONS LEARNED

* Because the software-controlled implementation was not fully understood, the result was
flawed specifications and incomplete tests. Therefore, even though the software and
subsystem were thoroughly tested against the specifications, the system design was in
error, and a mishap occurred.

* Changeover from hardware to software requires a review of design assumptions by all
relevant specialists acting jointly. This joint review must include all product
specifications, interface documentation, and testing.

* The test, verification and review processes must each include end-to-end event review
and test.

F.3 REUSED SOFTWARE CAUSES FLIGHT CONTROLS TO SHUT
DOWN

F.31 SUMMARY

A research vehicle was designed with fly-by-wire digital control and, for research and weight
considerations, had no hardware backup systems installed. The normal safety and testing
practices were minimized or eliminated by citing many arguments. These arguments cited use of
experienced test pilots, limited flight and exposure times, minimum number of flights, controlled
airspace, use of monitors and telemetry, etc. Also, the argument justified the action as safer;
because the system reused software from similar vehicles currently operational.

The aircraft flight controls went through every level of test, including "iron bird" laboratory tests
that allow direct measurement of the response of the flight components. The failure occurred on
the flight line the day before actual flight was to begin after the system had successfully
completed all testing. The flight computer was operating for the first time unrestricted by test
routines and controls. A reused portion of the software was inhibited during earlier testing as it
conflicted with certain computer functions. This was part of the reused software taken from a
proven and safe platform because of its functional similarity. This portion was now enabled and
running in the background.

Unfortunately, the reused software shared computer data locations with certain safety-critical
functions; and it was not partitioned nor checked for valid memory address ranges. The result
was that as the flight computer functioned for the first time, it used data locations where this

F-3

Software System Safety Handbook
Appendix F

reused software had stored out-of-range data on top of safety-critical parameters. The flight
computer then performed according to its design when detecting invalid data and reset itself.
This happened sequentially in each of the available flight control channels until there were no
functioning flight controls. Since the system had no hardware backup system, the aircraft would
have stopped flying if it were airborne. The software was quickly corrected and was fully
operational in the following flights.

F.3.2 KEY FACTS

* Proper process and procedures were minimized for apparently valid reasons; i.e., the
(offending) software was proven by its use in other similar systems.

* Reuse of the software components did not include review and testing of the integrated
components in the new operating environment. In particular, memory addressing was not
validated with the new programs that shared the computer resources.

F.3.3 LESSONS LEARNED

» Safety-critical, real-time flight controls must include full integration testing of end-to-end
events. In this case, the reused software should have been functioning within the full
software system.

* Arguments to bypass software safety, especially in software containing functions capable
of a Kill/Catastrophic event, must be reviewed at each phase. Several of the arguments to
minimize software safety provisions were compromised before the detection of the
defect.

F.4 FLIGHT CONTROLS FAIL AT SUPERSONIC TRANSITION

F41 SUMMARY

A front line aircraft was rigorously developed, thoroughly tested by the manufacturer, and again
exhaustively tested by the Government and finally by the using service. Dozens of aircraft had
been accepted and were operational worldwide when the service asked for an upgrade to the
weapons systems. One particular weapon test required significant telemetry. The aircraft change
was again developed and tested to the same high standards including nuclear weapons carriage
clearance. This additional testing data uncovered a detail missed in all of the previous testing.

The telemetry showed that the aircraft computers all failed -- ceased to function and then
restarted -- at specific airspeed (Mach 1). The aircraft had sufficient momentum and mechanical
control of other systems so that it effectively "coasted" through this anomaly, and the pilot did
not notice.

The cause of this failure originated in the complex equations from the aerodynamicist. His
specialty assumes the knowledge that this particular equation will asymptotically approach
infinity at Mach 1. The software engineer does not inherently understand the physical science
involved in the transition to supersonic speed at Mach 1. The system engineer who interfaced

Software System Safety Handbook
Appendix F

between these two engineering specialists was not aware of this assumption and, after receiving
the aerodynamicist's equation for flight, forwarded the equation to software engineering for
coding. The software engineer did not plot the equation and merely encoded it in the flight
control program.

F4.2 KEY FACTS
* Proper process and procedures were followed to the stated requirements.

* The software specification did not include the limitations of the equation describing a
physical science event.

e The computer hardware accuracy was not considered in the limitations of the equation.

e The various levels of testing did not validate the computational results for the Mach 1
portion of the flight envelope.

F.4.3 LESSONS LEARNED

* Specified equations describing physical world phenomenon must be thoroughly defined,
with assumptions as to accuracy, ranges, use, environment, and limitations of the
computation.

* When dealing with requirements that interface between disciplines, it must be assumed
that each discipline knows little or nothing about the other and, therefore, must include
basic assumptions.

* Boundary assumptions should be used to generate test cases as the more subtle failures
caused by assumptions are not usually covered by ordinary test cases (division by zero,
boundary crossing, singularities, etc.).

F.5 INCORRECT MISSILE FIRING FROM INVALID SETUP
SEQUENCE

F.51 SUMMARY

A battle command center with a network controlling several missile batteries was operating in a
field game exercise. As the game advanced, an order to reposition the battery was issued to an
active missile battery. This missile battery disconnected from the network, broke-down their
equipment and repositioned to a new location in the grid.

The repositioned missile battery arrived at the new location and commenced setting up. A final
step was connecting the battery into the network. This was allowed in any order. The battery
personnel were still occupying the erector/launcher when the connection that attached the battery
into the network, was made elsewhere on the site. This cable connection immediately allowed
communication between the battery and the battle command center.

Software System Safety Handbook
Appendix F

The battle command center, meanwhile, had prosecuted an incoming “hostile” and designated the
battery to “fire," but targeted to use the old location of the battery. As the battery was off-line,
the message was buffered. Once the battery crew connected the cabling, the battle command
center computer sent the last valid commands from the buffer; and the command was
immediately executed. Personnel on the erector/launcher were thrown clear as the
erector/launcher activated on the old slew and acquire command. Personnel injury was slight as
no one was pinned or impaled when the erector/launcher slewed.

F.5.2 KEY FACTS
* Proper process and procedures were followed as specified.
e Subsystems were developed separately with ICDs.

* Messages containing safety-critical commands were not “aged” and reassessed once
buffered.

* Battery activation was not inhibited until personnel had completed the set-up procedure.

F.5.3 LESSONS LEARNED

» System engineering must define the sequencing of the various states (dismantling,
reactivating, shutdown, etc.) of all subsystems with human confirmations and re-
initialization of state variables (e.g., site location) at critical points.

* System integration testing should include buffering messages (particularly safety-critical)
and demonstration of disconnect and restart of individual subsystems to verify that the
system always transitions between states safely.

* Operating procedures must clearly describe (and require) a safe and comprehensive
sequence in dismantling and reactivating the battery subsystems with particular attention
to the interaction with the network.

F.6 OPERATOR’S CHOICE OF WEAPON RELEASE OVERRIDDEN
BY SOFTWARE

F.6.1 SUMMARY

During field practice exercises, a missile weapon system was carrying both practice and live
missiles to a remote site and was using the transit time for slewing practice. Practice and live
missiles were located on opposite sides of the vehicle. The acquisition and tracking radar was
located between the two sides causing a known obstruction to the missiles’ field of view.

While correctly following command-approved procedures, the operator acquired the willing
target, tracked it through various maneuvers, and pressed the weapons release button to simulate
firing the practice missile. Without the knowledge of the operator, the software was programmed
to override his missile selection in order to present the best target to the best weapon. The
software noted that the current maneuver placed the radar obstruction in front of the practice

Software System Safety Handbook
Appendix F

missile seeker while the live missile had acquired a positive lock on the target and was
unobstructed. The software, therefore, optimized the problem and deselected the practice missile
and selected the live missile. When the release command was sent, it went to the live missile;
and “missile away” was observed from the active missile side of the vehicle when no launch was
expected.

The “friendly” target had been observing the maneuvers of the incident vehicle and noted the
unexpected live launch. Fortunately, the target pilot was experienced and began evasive
maneuvers, but the missile tracked and still detonated in close proximity.

F.6.2 KEY FACTS
* Proper procedures were followed as specified, and all operations were authorized.
* All operators were thoroughly trained in the latest versions of software.

* The software had been given authority to select “best” weapon, but this characteristic was
not communicated to the operator as part of the training.

* The indication that another weapon had been substituted (live vs. practice) by the
software was displayed in a manner not easily noticed among other dynamic displays.

F.6.3 LESSONS LEARNED

* The versatility (and resulting complexity) demanded by the requirement was provided
exactly as specified. This complexity, combined with the possibility that the vehicle
would employ a mix of practice and live missiles was not considered. This mix of
missiles is a common practice and system testing must include known scenarios such as
this example to find operationally based hazards.

* Training must describe the safety-related software functions such as the possibility of
software overrides to operator commands. This must also be included in operating
procedures available to all users of the system.

F-7

Software System Safety Handbook
Appendix G

G. PROCESS CHART WORKSHEETS

Proceeding Process

« Program Initiation

_>

Software Safety Program Planning
Procuring Agency - Customer

Inputs (Suppliers

* Acquisition Policy

+ OCD/OR/MENS

- DOP

* Proposal

« Safety Policy

* Generic Requirements
* Lessons Learned

« PHL

Inputs (Later Milestones)
« Draft PHA

« Draft TEMP

* Draft SEMP

« Draft ILSP

« Draft CRLCMP

* Draft SSS

« Draft S/SDD

« Draft SOW/RFP

Purpose:
Identify and Establish System Safety Program Tasks and Requirements

__>

Next Process

« Safety Program Management

Primary Sub-Processes
+ Define Acceptable Level of Risk (HRI, Acceptance Authority, Risk Assessment Methodology)
« Establish System Safety Program:
— Identify and Establish Interfaces to Other Program Disciplines
— Identify Contract Requirements
~ Develop POA&M
Establish Safety Data Library
Establish Hazard Tracking Process
— Resource Requirements Determination:
» Analyses Required
» Tests Required (U)
» Resources Required
Develop Safety Statement of Work: (U)
» Define Safety Program Requirements (U)
» Define Safety Reporting Requirements (U)
» Define Safety Review Requirements (U)
Proposal Evaluation
» Develop Evaluation Criteria

Entry Criteria

« Program Initiation

» Evaluate Proposals

Related Sub-Processes

* Program Planning and Management
« System Safety Management Plan development

Outputs (Customers)

* Input to SOW/SOO

Input to RFP

Safety Proposal Evaluation Plan
Safety POA&M

* Review Requirements

System Safety Management Plan
System Safety Program Plan with
SwSPP Appendix

SSWG Charter and Subgroups
Input to SDP

Input to TEMP

Input to SEMP

Input to ILSP

Input to PHL

Input to PHA

Input to CRLCMP

Players References in Addition to 4.1.1
PM, Principal for Safety Service Specific Guidance

SE, SWE, SWSE (EVAL) IEEE 1228

SSWG (Later Milestones) FAR’s

Exit Objective

« System Safety Program Management
Plan

« Proposal Evaluation and Acceptance

« Established System Safety Program

Qnments:

Proceeding Process
* Program Initiation

Software Safety Program Planning ’
Developing Agency - Supplier

___>

Inputs (Suppliers

* SOW/RFP

« OCD/OR/MENS
« DOP

 Safety Policy

« PHL

Inputs (Later Milestones

« Draft PHA
Draft SEMP
Draft TEMP
Draft ILSP
Draft CRLCMP
Draft SSS
Draft S/SDD

Purpose:

Define and Implement an Effective System Safety Program

Next Process

« Safety Program Management

Primary Sub-Processes
« Interpretation of SOW Requirements
+ Resource Requirements Determination:
— Analyses Required
Tests Required
— Resources Required
« Establish System Safety Program
Identify and Establish Interfaces to Other Program Disciplines
— Identify Contract Requirements
— Establish Safety Data Library
Establish Hazard Tracking Process (I)
— Develop Proposal Input
« Develop Software Safety Program Plan
POA&M (U)
— Allocation of Resources (U)

Entry Criteria
+ RFP Receipt

— SPRA Schedule (U)

Related Sub-Processes

* Program Planning and Management
« System Safety Program Plan development

Outputs (Customers)

RFP Response/Proposal Input
Safety POA&M

Review Requirements

* BAFO Response

System Safety Management Plan (If
Required)

System Safety Program Plan with
SwSPP Appendix

* SSWG Charter and Subgroups
Software Development Plan Input
TEMP Input

+ SEMP Input

« ILSP Input

Input to SSS

Input to S/SDD

References in Addition to §4.1.1
IEEE 1228

Players

PM, SSPM, SWSPM, SE, SWE
Contracts Personnel

SSWG (Later Milestones)

Exit Objective

« System Safety Program Plan
« Established System Safety Program

Comments

Software System Safety Handbook
Appendix G

Proceeding Process

* Software Safety Program
Planning

Software Safety Program
Management

- -

Inputs (Suppliers

+ OR/ORD/MENS
+ SOW/SOO/RFP
« Safety Policy

Inputs (Later Milestones

« SSMP
« SEMP
« TEMP
Software Safety Testing

Purpose:

Ensure Effective Execution of Software System Safety Program

Next Process

* Functional Hazard List
Development

* Tailoring Generic Safety-Critical
Sofl Requi L

Outputs (Customers

Inputs to SOW/SOO/RFP
SwSWG Membership Charter

Primary Sub-Processes
« Establish and Manage SWSWG
— Charter SWSWG
» Define Membership
Chair Meetings (I)
— Prepare Meeting Minutes (I)
— Software Hazard Tracking
+ Update Safety Program Plans
— POA&M (U)
— Allocation of Resources (U)
SPRA Schedule (U)
« Safety Program Monitoring
« Provide, Update and Develop Presentations (I)
+ Provide Safety Management Inputs to Software Test Plans (I)

Entry Criteria

« Safety Program Initiation

Related Sub-Processes

« System level Hazard Tracking
« Initiate Sub-Contractor/Contract SOW/SOO
+ Program Monitoring of Sub-Contractor/Contract

Update to SSMP

Update to Safety Program Schedule
Updates to SEMP/TEMP

Input to SPRA Reviews

Exit Objective

* Program Completion

Players References in Addition to §4.1.1
PM/SSPM/ Service Specific Guidance

Customer/Supplier Personnel IEEE 1228

Qnents

Proceeding Process
 Software Safety Program
Planning

« Software Safety Program

Inputs (Suppliers

g3
S8
2

SOW/SOO/RFP
* Generic Requirements & Hazards
List
Lessons Learned :
— Data Base
— Previous Mishap Causes
Draft PHL
Functional Allocation
Safety Function Inputs From
Domain Experts
Draft SSS
Draft S/SDD
Draft CRLCMP

Life Cycle Environmental Profile

—Mapagement

Functional Hazard List Developme

Purpose:

To Identify All Hazards and Safety-Critical Functions at the System

Next Process

« Tailoring the Generic Safety-
Critical Software
Requirements List

Outputs (Customers)

IJeveTEMP Input
+ SEMP Input

Primary Sub-Processes
« Tailor Generic and Domain Specific Hazards to System (I)
« Evaluate Hazards Against System Function Requirements (I)
« Evaluate Design Options (I)
— Identify Technical Safety Risks (I)
Identify Potential Programmatic Risks (I)
« Evaluate All Safety-Critical Functions Identified by Each Domain Expert.

Entry Criteria

+ Contract Award (MS 0) or
Award of Safety Contract

Related Sub-Processes

« Systems Engineering
* Functional Allocations

PHL Input

PHA Input

SSHA Input

Draft CRLCMP Input

RHA/SRCA Input

Initial SCFL

Recommendations Regarding Design
Options

Trade Study Inputs

General Test Requirements

SRCA Input

Domain Specific Functional Hazards
List

Input to SPRA Reviews

Exit Objective

Satisfactory completion of an initial
safety-critical Functions List (SCFL)
System Design Option Selection

« PDR

References in Addition to §4.1.1
IEEE 1498

Players
SSWG, SWSWG, Domain Experts

Domain Specific Functional Hazards
List

Comments

Software System Safety Handbook
Appendix G

Proceeding Process

* Software Safety Program
Planning & Management

* Functional Hazard List
Develonment

Inputs (Suppliers)
* Design Standards
* General Requirements Doc.
* Generic Safety-Critical
Software Requirements Lists
* Lessons Learned:
Analyses on Similar
Systems
Previous Mishap Causes

Inputs (Later Milestones)
* Draft SEMP

* Draft TEMP
* Draft CRLCMP

[ailoring The Generic Safety-Critical
Software Requirements List

Purpose:
Establish Domain Specific Generic Software Safety-Critical
Requirements List

Next Process

« Preliminary Hazard Analysis -
(PHA)

Outputs (Customers)

« Tailored Generic Safety-Critical
Software Requirements List

Entry Criteria

+ Contract Award (MS 0) or
Award of Safety Contract

Primary Sub-Processes

« Obtain Existing Generic Requirements & Guidelines Lists

 Determine Applicability of Requirements to System Under Development (T)
Determine Allocation of Applicable Generic Requirements to
Hardware, Software and Operator (I)

* Generate Additional Generic Requirements If Applicable

* Prioritize Requirements (I)

* Review Draft SDP/SEMP/TEMP and Incorporate Applicable Requirements

@
* Obtain Evidence to Support Compliance Assessment
— Perform Compliance Assessment (I)

Related Sub-Processes

* Brainstorming Session

« RHA/SRCA Input

* PHL Input

PHA Input

SSHA Input

SDP Input

Input to Software Test Plans
Generic Test Requirements

Input to SPRA Reviews

TEMP Input

SEMP Input

CRLCMP Input

Exit Objective

« Domain Specific Generic Safety-
Critical Software Requirements List

References in Addition to §4.1.1
STANAG 4404
Applicable Standards & Specifications

Players
SSWG, SWSWG, SWwQA,
Domain Experts
Test and Evaluation Team

Qnents

Proceeding Process
* Tailor The Generic Safety-Critical
Software Requirements List

« Functional Hazard List
Development

*_Program Planning/Management

Inputs (Suppliers

+ SOW/SOO/RFP

Risk Assessment Criteria, HRT

Preliminary Hazard Analysis - (PHA}

Purpose:
Identification, Classification and Tracking of System Level
Software Hazards

Next Process

* Derived System Specific Safety
Critical Software Requirements

* Preliminary Software Design
Analysis

Outputs (Customers

« RHA/SRCA Inputs
+ PHA Update

Draft SSS, S/SDD
Lessons Learned:

— Analyses on Similar
Systems
Incident Reports
Previous Mishap Causes
Life Cycle Environment
Profile
« PHL
Tailored Generic Safety-
Critical Software
Requirements List

Inputs Later Milestones
* HARs

Entf{ Griteria

« Upon Completion of PHL

Primary Sub-Processes
« Identify System Level Causal Factors (I)
* Identify Software Level Causal Factors (I)
— Apply Analysis Techniques (for Example SFTA’S) (I)
— Develop Recommendations to Minimize Software Induced Hazards (I)
 Apply HRI and Prioritize Hazards (I)
« Apply Risk Assessment Criteria (Categorize) Hazards (I)
« Link Hazard Causal Factors to Requirements (I)
* Develop Design Recommendations to Mitigate Hazards (I)

Related Sub-Processes

« Safety Data Library (SDL) Maintenance
« System Level Trade Studies
* Software Level Trade Studies

« Input to S/W Design
Inputs to S/W Development Plan
Input to Preliminary Software
Design Analysis SSHA
Input to Trade-Off Studies
Design Implementation
Recommendations
* HARs
Inputs to Software Test Plans

— Test Requirements
Input to SPRA Reviews
Prioritized Hazard List
Input to SSS, SRS, S/SDD, IRS (I)
Input to ECP, SENs, PIPs (I)

Exit Objective

« Completion of Hazard
Categorization, Prioritization, and
Determination of All Causal Factors
(Initial Drafts)

Players References in Addition to §4.1.1
SwSWG, Domain Experts IEEE 1498

* Resolution of Identified Hazards
(Completion)

Comments

Software System Safety Handbook
Appendix G

Proceeding Process

« Preliminary Hazard Analys
(PHA)

« Generic Software Safety
Requirements/Guidelines

—>

InApl?t%l? giusppliers

Draft SSS,S/SDD

Draft SDP/SQAP/QAPP
Draft PHA

Tailored Specific Generic
Safety-Critical Software
Requirements List

Draft CRLCMP

erive System Specific Safety-Critic ’
Software Requirements

Next Process

* Preliminary Software Design
Subsystem Hazard Analysis
SSHA

Purpose:

Derivation of System Specific Safety-Critical Software Requirements

Entry Criteria
« Initial Draft PHA

Primary Sub-Processes
« Develop Safety Design Requirements (I)

— Recommend Design Requirements to Minimize Identified Causal Links

to Software (I)

— Recommend Design Restrictions, Limitations (e.g. Feedback Loops) (I)
* Identify Safety-Critical S/W Functions in Design (I)

— Identify Casual Links to Software (I)

— Perform Path Analyses (I)

— Identify Functions Influencing Safety-Critical Path (T)

Outputs (Customers

* RHA/SRCA

« safety-critical Requirements List
Input to SSS, S/SDD

Input to TEMP

Input to OOD Process (If Applicable)
Input to SPRA Reviews

Input to SQAPP/SDP/QAPP

Input to Reliability, Availability and
Maintainability Plans

Input to CRLCMP

Related Sub-Processes

* Software Architecture Preliminary Design Review (PDR)
* Requirements Tracing

Players References in Addition to §4.1.1
SwSWG CM
SQA T&E

V&V Maintainability

Exit Objective

 Preliminary Safety-Critical Software
Requirements List

Qnents

Proceeding Process
* Derive System Specific
Safety-Critical Software

Requirements

Preliminary Software Design
Subsystem Hazard Analysis - SSHA|

Inputs (Suppliers

* PHL

Draft PHA

Draft RHA/SRCA
Draft SHA

SSS, S/SDD, SRS, IRS
Draft SDD

Draft IDD

Draft CRLCMP

Purpose:

Analyze System & Software Architecture and Preliminary
Computer Software Configuration Item Design

Next Process

* Software Detailed Design
Subsystem Hazard Analysis
(SSHA)

Outputs (Customers)

« SSHA of Top Level Software
Design

Entry Criteria

* Functional Allocation of System
Level Requirements
* Milestones I & II

Primary Sub-Processes
« Link Hazard Causal Factors to Actual Design (I)
* Trace Top Level Safety Requirements to Software Design (I)
* Analyze Hierarchy
— Tradeoffs of Various Decomposition Schemes
Analyze Software Architecture
Identify Safety-Critical CSCIs
— Make Recommendations for Alternative Architectures That Minimize
Number of Safety-Critical CSCIs
Designate Safety-Critical CSCIs in Software Documentation
— Analyze Concept of Execution for Safety-Critical Interactions
* Analyze Design of CSCls
Identify Safety-Critical CSUs
— Make Recommendations for Alternative Designs That Minimize the
Number of Safety-Critical CSUs

esignate Safety-Critical CSUs in Software Documentation
Relatela N e

« Complete SRHA/SRCA

* Analyze Architecture

« Participate in Requirements Decomposition
* Analyze Proposed Design Implementation

PHA Updates
RHA/SRCA Updates
Input to SPRA Reviews
Annotations to SSS, S/SDD, SRS,
IRS
SDD & IDD Change
Recommendations, Updates
* HARs
Input to Test Plans

Input to STDs
Input to CRLCMP

Exit Objective

CDR (Design Freeze)

Link Hazard Causal Factors to
Actual Design

Trace Top Level Safety

Players References in Addition to §4.1.1
SwSWG

Requirements to Software
Design

Comments

Software System Safety Handbook
Appendix G

Proceeding Process

* Preliminary Software
Design Subsystem Hazard
Analysis - SSHA

Inputs (Suppliers)

Draft SHA

SSS, S/SDD, SRS, SDD, IDS,
IRS

Preliminary Software Design
Subsystem Hazards Analysis
(SSHA)

Inputs (later iterations

Schematics (for Firmware
Analyses Only)

Source Code

Safety Test Results for Unit
Test

System Hazards Analysis

Software Detailed Design
Subsystem Hazard Analysis - SSHA|

Purpose:
Analyze the CSCI Design Down to Code Level

Next Process

« System Hazard Analysis (SHA)
 Software Safety Testing and
Analysis

Entry Criteria

+ Draft Preliminary Software
Design Analysis SSHA

Timing Analysis

Primary Sub-Processes

Link Hazard Causal Factors to Actual Code (I)
Analyze Final Implementation of Safety Interlocks, Checks and Flags (I)
+ Ensure Intent of Safety Requirement Is Met
“What If” Type of Analysis (I)
Safety-Critical Software Path Analysis (I)
Identify Hazards Related to Interfacing Subsystems (I)
* Determine Hazardous Interface Failure Modes
* Determine Hazardous Interface Data Errors
* Reflect Failure Modes and Data Errors to SHA

Related Sub-Processes

Process Flow Chart Analysis
Code Level Analysis
— Global & Local Data Analysis
Data/Information Flow Analysis
— Control Flow Analysis
Structure Analysis
— Interface Analysis
— Interrupt Analysis

Outputs (Customers)

« Inputs to SHA
* SDD & IDD Recommendations
+ Development of Software
Development Files (SDF) on a CSCI
Basis:
Global & Local Variable
Descriptions
Hierarchy Charts
— Software Fault Trees
— CSCI Descriptions
Annotated Code Listings
— Process Flow Charts
Input to Test Procedures
Input to SPRA Reviews

Exit Objective

* Resolution of Identified
Hazards

Tailored Generic Safety-Critical
Software Design Requirements
List

Incident Reports

Threat Hazard Assessment

Life Cycle Environmental
Profile

* HARs

Lessons Learned

Entry Criteria

* System Design Review

Requirements (I)
Integrate the Results of the SSHAs(U)

— Identify Hazards That Cross Subsystem Boundaries (I)

Ensure That Hazards Are Mitigated in Interfacing Subsystems or External
Systems ()

— Identify Unresolved Interface Safety Issues and Reflect Back to SSHAs (I)
Examine Causal Relationship of Multiple Failure Modes (HW, SW) to Creating
Software System Hazards (I)

Determine Compliance With Safety Criteria and System and Subsystem
Requirements Documents (I)

Assess Hazard Impacts Related to Interfaces (I)

Develop Recommendations to Minimize Hazard Effects (I)

Develop Test Recommendations to Verify Hazard Mitigation (I)

Related Sub-Processes

Players References in Addition to §4.1.1
SwSWG Applicable Programmers
Domain Experts Reference & Processor Manuals
T&E.
Qnents
Proceeding Process . Next Process
]) System Hazard Analysis (SHA) .
* Software Detailed Design Software Safety Test Planning
Subsystem Hazard
Analysis - SSHA
Inputs (Suppliers Purpose: R . Outputs (Customers
To Analyze Subsystem Interfaces & Interactions, Interface Design,)
* PHA . . . « Input to SPRA Reviews
. Draft SSHAs and System Functional and Physical Requirements for Safety + Updates to PHA
. SsS Hazards and to Assess and Classify Sustem Ricks + Updates to SSHAs
+ S/SDD Primary Sub-Processes + HARs
* IRS « Inputs to Software Design
. IDD * Analyze IRS, IDD to Ensure Correct Implementation of Safety Design .

Inputs to Interface Design

Inputs to Test Requirements
Inputs to Test Plan

Prioritized Hazard List

« List of Causal Interrelationships to
Hazards

Players References in Addition to §4.1.1
SSWG
SwSWG

Exit Objective
* Milestone 3

Comments

Software System Safety Handbook

Appendix G

Proceeding Process

+ System Hazard Analysis
(SHA)

Software Safety Test Planning

Inputs (Suppliers
* Result from:
— PHA
Tailoring Generic Safety-
Critical Software
Requirements List
SSHAs
SHA
— RHA/SRCA
* Generic Lessons Learned Test
Requirements
« SPRA Requirements
« TEMP

Purpose:

To Ensure Incorporation of Appropriate Software Safety Test to
Address All Identified Hazards

Next Process

* Software Safety Testing &
Analysis

Outputs (Customers)

« TEMP Update
« Input to Test Plans/Procedures

Primary Sub-Processes
+ Develop System Safety Test Plan (U)
— Ensure Appropriate Coverage of Identified Hazards and Test
Requirements (T)
Identify Detailed Safety Tests (I)
— Identify System Level Safety Tests (I)
Develop Safety Test Schedule (I)
+ System Development of Test Procedures (U)
— Review Procedures for Safety-Critical Test (I)
Review Procedures for Other Testing (I)
» Modifications to Incorporate Safety Aspects (I)

Entry Criteria

« Initiation of Analyses Proces:

Related Sub-Processes

« Participate in TRR and SPRAs Meetings
« Identify Evaluation Requirements for Models, Simulators,
Tools, & Environments

« Evaluations Requirements for
Models, Simulators, Tools, &
Environment

Exit Objective

« Develop Test and Test Procedures to
Address Identified Hazards

Test Procedures
Preliminary Test Results
Draft Test Reports
« STR/SPRs
System Level Specifications
- SRS
- SDD
IDS/IRS
SRCA
*« RTM

Players References in Addition to §4.1.1
SW Testing SwSWG
QA User
Qnents
Proceeding Process Software Safety Testing &
+ Software Safety Test Analysis « Certify Software Developed 1A
Planning Applicable Standards and Criteri;
Inputs (Suppliers Purpose: Outputs (Customers
« TEMP To Ensure Appropriate Software Safety Tests Have Been « Update Safety Test Procedures
« Test Plans Performed and Identified Hazards Have Been Adequately « Update TEMP
« IV&V Plans

M‘ﬁ'}%}'tycgub-Processes

* Validate Safety Test Procedures (I)
« Perform and/or Monitor Safety Testing (I)
 Perform Test Data Reduction (I)
« Perform Test Data Analysis (I)
— Identify Anomalies (I)
Identify Causal Factors for Safety Related Anomalies (I)
— Perform Code Level Analysis If Required (I)
Recommend Corrective Actions (I)
* Retest of Failed System Requirements (I)
* Develop Safety Test Report (U)

Entry Criteria

+ TRR
« SPRA Approval

Related Sub-Processes

* Software Testing
 System Testing

« STR/STP/HARs
« Input to SPRAs
« Update to RTM

Players References in Addition to §4.1.1
SW Testing SwSWG
QA User

Exit Objective

« Completion of Safety Related
Testing

* Resolution of Safety Anomalies

Comments

Software System Safety Handbook
Appendix G

Proceeding Process Verify Software Developed IAW Next Process
* Software Safety Testing } Applicable Standards & Criteria ,

and Analysis

« Software Safety Assessment

Inputs (Suppliers Purpose: Outputs (Customers)

Ensure That Applicable Generic Safety Design and Implementation
Requirements Have Been Adhered to in the Development of the Safety-Critical

Safety requirements and criteria Compliance Assessment Report for

analysis/Requirements Hazards Software Safety-Critical Software
Analysis Requirements
+ Software Development Plan Primary Sub-Process + Provide Inputs to Software Safety

SRS, SDD, IRS, IDD, VDD
Source Code Listings
Configuration Management

Assessment Report

Evaluate Safety-Critical Software Products Against Identified Safety Related ? .
Provide Input to SPRA Reviews

Requirements (I)
Evaluate Life Cycle Management Plans Against Safety Related Requirements

Plan ©
' ;;f;ware Quality Assurance « Prepare Compliance Assessment Report for Generic Safety-Critical Software
+ Lessons learned Requirements (U)
+ CRLCMP

Generic Safety-Critical
Software Requirements Lists

Design Standards
General Requirements Doc.

Entry Criteria Related Sub-Processes Exit Objective

. « Compliance Assessment Report
* Software Quality Assurance Assessment P P

Players References in Addition to §4.1.1
SwSWG

SQA,, CM, V&V, R&M

Qnents

Proceeding Process Next Process
/ —» Software Safety Assessment —»

« Certify Software

Developed AW

Applicable Standards and

Ceibaih
Inputs (Suppliers) Purpose: Outputs (Customers)
* PHA To Provide Residual Risk Assessment of the Software As a « Input to Safety Assessment Report
* SSHAs Component of the System « Input to Milestone Decision Memos
* I?Il:i/]\l « Input to SPRA Reviews
. S

Updated PHA, SSHAs, SHA, HARs
Software Test Results « Assess Results of Software Hazards Analyses (I) Software Sa.fc.ty Assessment RCP"?‘

« RTM « Assess Results of Safety and IV&V Tests (I) Input to Training Manua.ls,.Opcratmg
V&V Results Review Safety-Critical Software Requirements Compliance Assessment (I) Manuals, and Other Logistics Manuals
Update Hazard Risk Index for Individual Hazards As Appropriate (I)
Generate Software Safety Assessment Report (U)

Assess Residual Risk of System Modifications (I) (U)

Update Software Safety Assessment Report (U)

Primary Sub-Processes

Safety Test Results

Compliance Assessment for
Safety-Critical Software
Requirements

OPEVAL Test Results
Acceptance Test Results
Earlier Software Safety
Assessment Reports

ECPs, STRs, SCNs, Etc.

Related Sub-Processes

* Hazard Action Report Closure

Entry Criteria Evaluate OPEVAL and Acceptance Test Results Exit Objective
« Reassess Hazard Controls (I) y .
* CDR Complete Determine Degree of Hazard Mitigation (T) * Successful Completion of OPEVAL

* Close Hazard Action Reports As Appropriate (I) and Acceptance Testing

« Determine Residual Risk (U)

Players References in Addition to §4.1.1
SSWG
SwSWG

Comments

Software System Safety Handbook
Appendix H

H. SAMPLE CONTRACTUAL DOCUMENTS

H.1 SAMPLE REQUEST FOR PROPOSAL

The following represents a sample System Safety paragraph within a RFP that should be
considered as a starting point to launch from. As with any example, this sample paragraph must
be carefully read and considered as to whether it meets the safety goals and objectives of the
program it is being considered for. It must be tailored if tailoring is appropriate.

Suggested Language for Section L, Instructions to Offerors:
"System and Software Safety Requirements -

Offerors shall describe the proposed System and Software Safety Engineering process,
comparing it to the elements in MIL-STD-882 and NATO STANAG 4404. It will
explain the associated tasks that will be accomplished to identify, track, assess, and
eliminate hazards as an integral part of the design engineering function. It will also
describe the proposed process to reduce the residual safety risk to a level acceptable to
program management. It will specifically addresses (as a minimum) the role of the
proposed System and Software Safety approach in design, development, management,
manufacturing planning, and key program events (as applicable) throughout the system
life cycle.

Suggested Language for Section M, Evaluation Factors for Award:
"The offeror's approach will be evaluated based on:

The acceptability of the proposed System and Software Safety approach in comparison to
the "System Safety Program" guidance described in the MIL-STD-882, and STANAG
4404 as applied to satistfy program objectives.

The effectiveness of the proposed approach that either mitigate or reduce hazards to the
extent to which:

* The proposed approach reflects the integration of system and software safety
engineering methodologies into the planning for this program.

* The proposed approach evaluates the safety impacts of using COTS/GOTS/NDI
hardware and software on the proposed system for this program.

* The proposed approach demonstrates the ability to identify, document, track, analyze,
and assess system and subsystem-level hazards and their associated causal factors
through detailed analysis techniques. The detailed analysis must consider hardware,
software and human interfaces as potential hazard causes.

* The proposed approach communicates initial safety requirements to the design team
including the activities necessary to functionally derive safety requirements from the
detailed causal factor analysis.

Software System Safety Handbook
Appendix H

* The proposed approach produces the engineering evidence of hazard elimination or
risk abatement to acceptable levels of residual safety risk that balances hazard severity
with probability of occurrence.

* The proposed approach considers all requirements to meet or obtain the necessary
certifications or certificate criteria to field, test, and operate the system.

H.2 SAMPLE STATEMENT OF WORK

The following examples represent sample system safety and software safety related paragraphs
that can be included in a SOW to ensure that the developer considers and proposes a SSP. As
with the sample RFP paragraph above, the SOW system safety paragraphs must be considered as
a starting point for consideration. All safety-related SOW paragraphs must be assessed and
tailored to ensure they specify all necessary requirements to meet the safety goals and objectives
of the acquiring agency.

H.21 SYSTEM SAFETY

The following paragraph represents a SOW example where a “full-blown” SSP is required which
incorporates all functional components of the system including system-level, and subsystem-level
hardware, software, and the human element. The suggested language for system safety
engineering is as follows:

System Safety

The contractor shall conduct a system safety management and engineering program using MIL-
STD-882 as guidance. The program shall include the necessary planning, coordinating, and
engineering analysis to:

* Identify the safety-critical functions of the system and establish a protocol of analysis,
design, test, and verification & validation for those functions.

* Tailor and communicate generic or initial safety-related requirements or constraints to the
system and software designers as early in the life cycle phase as possible.

* Identify, document and track system and subsystem-level hazards.
* Identify the system-level effects of each identified hazard.

» Categorize each identified hazard in terms of severity and probability of occurrence
(specify qualification or quantification of likelihood).

* Conduct in-depth analysis to identify each failure pathway and associated causal factors.
This analysis will be to the functional depth necessary to identify logical, practical and
cost-effective mitigation techniques and requirements for each failure pathway initiator
(causal factor). This analysis shall consider all hardware, software, and human factor
interfaces as potential contributors.

Software System Safety Handbook
Appendix H

* Derive safety-specific hazard mitigation requirements to eliminate or reduce the
likelihood of each causal factor.

* Provide engineering evidence (through appropriate inspection, analysis, and test) that
each mitigation safety requirement is implemented within the design and the system
functions as required to meet safety goals and objectives.

* Conduct a safety assessment of all residual safety risk after all design, implementation,
and test activities are complete.

* Conduct a safety impact analysis on all Software Change Notices (SCN) or ECP for
engineering baselines under configuration management.

* Submit for approval to the certifying authority, all waivers and/or deviations where the
system does not meet the safety requirements or the certification criteria.

* Submit for approval to the acquiring authority an integrated system safety schedule that
supports the programs’ engineering and programmatic milestones.

The results of all safety engineering analysis performed shall be formally documented in a
closed-loop hazard tracking database. The information shall be correlated in such a manner that
it can be easily and systematically extracted from the database to produce the necessary
deliverable documentation (i.e., PHA, SRCA, SSHA, SHA, O&SHA, FMEA, etc.) as required by
the contract. The maturity of the safety analysis shall be commensurate with the maturity of
system design in accordance with the acquisition life cycle phase.

H.2.2 SOFTWARE SAFETY

The following example represents a sample software safety program as a “stand-alone” task(s)
where another contractor or agency possesses the responsibility of system safety engineering.
The software safety program is required that incorporates all functional and supporting software
of the system which has the potential to influence system-level, and subsystem-level hazards.
The suggested language for software safety engineering program is as follows:

Software Safety

The contractor shall conduct a software safety engineering program using MIL-STD-882 and
STANAG 4404 as guidance. This program shall fully support the existing system safety
engineering program and functionally link software architecture to hazards and their failure
pathways. The program shall include the necessary planning, coordinating, and engineering
analysis to:

* Identify the safety-critical functions of the system and establish a protocol of analysis,
design, test, and verification & validation for those functions within the software
development activities.

e Tailor and communication generic or initial safety-related requirements or constraints to
the system and software designers as early in the life cycle phase as possible.

Software System Safety Handbook
Appendix H

* Analyze the existing documented hazards to determine software influence.
* Consider the system-level effects of each identified hazard.

* Provide input to system safety engineering as to the potential contributions or
implications of the software that would affect probability of occurrence.

* Conduct in-depth analysis to identify each failure pathway and associated software causal
factors. This analysis will be to the functional depth necessary to identify logical,
practical and cost-effective mitigation techniques and requirements for each failure
pathway initiator (causal factor). This analysis shall consider all hardware, software, and
human factor interfaces as potential contributors.

* Derive safety-specific hazard mitigation requirements to eliminate or reduce the
likelihood of each causal factor within the software functional architecture.

* Provide engineering evidence (through appropriate inspection, analysis, and test) that
each mitigation SSR is implemented within the design and the system functions as
required to meet safety goals and objectives.

* Conduct a safety assessment of all residual safety risk after all design, implementation,
and test activities are complete.

* Conduct a safety impact analysis on all SCNs, PTRs, or ECPs for engineering baselines
under configuration management.

* Submit for approval to the certifying authority, all waivers and/or deviations where the
system does not meet the safety requirements or the certification criteria.

* Submit for approval to the acquiring authority an integrated system safety schedule that
supports the programs’ engineering and programmatic milestones.

The results of all software safety engineering analysis performed shall be formally documented in
a closed-loop hazard tracking database. The information shall be correlated in such a manner
that it can be easily and systematically extracted from the database to produce the necessary
deliverable documentation (i.e., PHA, SRCA, SSHA, SHA, O&SHA, FMEA, etc.) as required by
the contract. The maturity of the software safety analysis shall be commensurate with the
maturity of system design in accordance with the acquisition life cycle phase. All software safety
analysis shall be conducted and made available to support the goals, objectives, and schedule of
the parent SSP.

H-4

	Cover
	Table of Contents
	List of Figures
	List ofTables

	Executive Overview
	Introduction to the Handbook
	Introduction
	Purpose
	Scope
	Authority/Standards
	Department of Defense
	DODD 5000.1
	DOD 5000.2R
	Military Standards
	MIL-STD-882B, Notice 1
	MIL-STD-882C
	MIL-STD-882D
	DOD-STD-2167A
	MIL-STD-498

	Other Government Agencies
	Department of Transportation
	Federal Aviation Administration
	Coast Guard
	Aerospace Recommended Practice

	National Aeronautics and Space Administration

	Commercial
	Institute of Electrical and Electronic Engineering
	Electronic Industries Association
	International Electrotechnical Commission

	International Standards
	Australian Defense Standard DEF(AUST) 5679
	United Kingdom Defense Standard 00-55 & 00-54
	United Kingdom Defense Standard 00-56

	Handbook Overview
	Historical Background
	Problem Identification
	Within System Safety
	Within Software Development

	Management Responsibilities
	Introduction to the “Systems” Approach
	The Hardware Development Life Cycle
	The Software Development Life Cycle
	Grand Design, Waterfall Life Cycle Model
	Modified V Life Cycle Model
	Spiral Life cycle Model

	The Integration of Hardware and Software Life Cycles

	A “Team” Solution

	Handbook Organization
	Planning and Management
	Task Implementation
	Software Risk Assessment and Acceptance
	Supplementary Appendices

	Introduction to Risk Management and System Safety
	Introduction
	A Discussion of Risk
	Types of Risk
	Areas of Program Risk
	Schedule Risk
	Budget Risk
	Sociopolitical Risk
	Technical Risk

	System Safety Engineering
	Safety Risk Management
	Initial Safety Risk Assessment
	Hazard and Failure Mode Identification
	Hazard Severity
	Hazard Probability
	HRI Matrix

	Safety Order of Precedence
	Elimination or Risk Reduction
	Quantification of Residual Safety Risk
	Managing and Assuming Residual Safety Risk

	Software Safety Engineering
	Introduction
	Section 4 Format
	Process Charts
	Software Safety Engineering Products

	Software Safety Planning Management
	Planning
	Establish the System Safety Program
	Defining Acceptable Levels of Risk
	Program Interfaces
	Management Interfaces
	Technical Interfaces
	Contractual Interfaces

	Contract Deliverables
	Develop Software Hazard Criticality Matrix
	Hazard Severity
	Hazard Probability
	Software Hazard Criticality Matrix

	Management

	Software Safety Task Implementation
	Software Safety Program Milestones
	Preliminary Hazard List Development
	Tailoring Generic Safety-Critical Requirements
	Preliminary Hazard Analysis Development
	Derive System Safety-Critical Software Requirements
	Preliminary Software Safety Requirements
	Matured Software Safety Requirements
	The subsystem analysis begins during concept exploration and continues through the detailed design and CDR. The safety analyst must ensure that the safety analyses keep pace with the design. As the design team makes design decisions and defines impleme
	Software Analysis Folders

	Preliminary Software Design, Subsystem Hazard Analysis
	Module Safety-Criticality Analysis
	Program Structure Analysis
	Traceability Analysis

	Detailed Software Design, Subsystem Hazard Analysis
	Participate in Software Design Maturation
	Detailed Design Software Safety Analysis
	Safety Interlocks
	Checks and Flags
	Firewalls
	Come-From Programming
	Bit Combinations

	“What If” Analysis
	Safety-Critical Path Analysis
	Identifying Potential Hazards Related to Interfacing Systems

	Detailed Design Analysis Related Sub-processes
	Process Flow Diagram Development
	Code-Level Analysis
	Data Structure Analysis
	Data Flow Analysis
	Control Flow Analysis
	Interface Analysis
	Interrupt Analysis
	Analysis By Inspection
	Code Analysis Software Tools

	System Hazard Analysis

	Software Safety Testing & Risk Assessment
	Software Safety Test Planning
	Software Safety Test Analysis
	Software Standards and Criteria Assessment
	Software Safety Residual Risk Assessment

	Safety Assessment Report
	Safety Assessment Report Table of Contents

	A. Definition of Terms
	A.1. Acronyms
	A.2. Definitions

	B. References
	B.1. Government References
	B.2. Commercial References
	B.3. Individual References
	B.4. Other References

	C. Handbook Supplemental Information
	C.1. Proposed Contents of the System Safety Data Library
	C.2. Contractual Documentation
	C.3. Planning Interfaces
	C.4. Meetings and Reviews
	C.5. Working Groups
	C.6. Resource Allocation
	C.7. Program Plans
	C.8. Hardware and Human Interface Requirements
	C.9. Managing Change

	D. COTS and NDI Software
	D.1. Introduction
	D.2. Related Issues
	D.3. Applications of Non-Developmental Items
	D.4. Reducing Risks
	D.5. Summary

	E. Generic Requirements and Guidelines
	E.1. Introduction
	E.2. Design and Development Process Requirements and Guidelines
	E.3. System Design Requirements and Guidelines
	E.4. Power-Up System Initialization Requirements
	E.5. Computing System Environment Requirements and Guidelines
	E.6. Self-Check Design Requirements and Guidelines
	E.7. Safety-Critical Computing System Functions Protection Requirements and Guidelines
	E.8. Interface Design Requirements
	E.9. Human Interface
	E.10. Critical Timing and Interrupt Functions
	E.11. Software Design and Development Requirements and Guidelines
	E.12. Software Maintenance Requirements and Guidelines
	E.13. Software Analysis and Testing

	F. Lessons Learned
	F.1. Therac Radiation Therapy Machine Fatalities
	F.2. Missile Launch Timing Causes Hangfire
	F.3. Reused Software Causes Flight Controls to Shut Down
	F.4. Flight Controls Fail at Supersonic Transition
	F.5. Incorrect Missile Firing from Invalid Setup Sequence
	F.6. Operator's Choice of Weapon Release Overridden by Software

	G. Process Chart Worksheets
	H. Sample Contractual Documents
	H.1. Sample Request for Proposal
	H.2. Sample Statement of Work

